Suppr超能文献

从基因转录时间序列对糖皮质激素的响应中推断因果关系网络。

Causal network inference from gene transcriptional time-series response to glucocorticoids.

机构信息

Department of Computer Science, Princeton University, Princeton, New Jersey, United States of America.

Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey, United States of America.

出版信息

PLoS Comput Biol. 2021 Jan 29;17(1):e1008223. doi: 10.1371/journal.pcbi.1008223. eCollection 2021 Jan.

Abstract

Gene regulatory network inference is essential to uncover complex relationships among gene pathways and inform downstream experiments, ultimately enabling regulatory network re-engineering. Network inference from transcriptional time-series data requires accurate, interpretable, and efficient determination of causal relationships among thousands of genes. Here, we develop Bootstrap Elastic net regression from Time Series (BETS), a statistical framework based on Granger causality for the recovery of a directed gene network from transcriptional time-series data. BETS uses elastic net regression and stability selection from bootstrapped samples to infer causal relationships among genes. BETS is highly parallelized, enabling efficient analysis of large transcriptional data sets. We show competitive accuracy on a community benchmark, the DREAM4 100-gene network inference challenge, where BETS is one of the fastest among methods of similar performance and additionally infers whether causal effects are activating or inhibitory. We apply BETS to transcriptional time-series data of differentially-expressed genes from A549 cells exposed to glucocorticoids over a period of 12 hours. We identify a network of 2768 genes and 31,945 directed edges (FDR ≤ 0.2). We validate inferred causal network edges using two external data sources: Overexpression experiments on the same glucocorticoid system, and genetic variants associated with inferred edges in primary lung tissue in the Genotype-Tissue Expression (GTEx) v6 project. BETS is available as an open source software package at https://github.com/lujonathanh/BETS.

摘要

基因调控网络推断对于揭示基因途径之间的复杂关系以及为下游实验提供信息至关重要,最终实现调控网络的重新设计。从转录时间序列数据中推断网络需要准确、可解释和有效地确定数千个基因之间的因果关系。在这里,我们从转录时间序列(BETS)开发了 Bootstrap Elastic net 回归,这是一种基于格兰杰因果关系的统计框架,用于从转录时间序列数据中恢复有向基因网络。BETS 使用弹性网络回归和来自自举样本的稳定性选择来推断基因之间的因果关系。BETS 高度并行化,能够有效地分析大型转录数据集。我们在社区基准测试(DREAM4 100 基因网络推断挑战)中展示了有竞争力的准确性,BETS 是同类性能方法中最快的方法之一,此外还推断了因果效应是激活还是抑制。我们将 BETS 应用于 A549 细胞暴露于糖皮质激素 12 小时过程中差异表达基因的转录时间序列数据。我们确定了一个包含 2768 个基因和 31945 个有向边(FDR ≤ 0.2)的网络。我们使用两个外部数据源来验证推断的因果网络边缘:相同糖皮质激素系统的过表达实验,以及在基因型组织表达(GTEx)v6 项目中与推断边缘相关的遗传变异。BETS 可在 https://github.com/lujonathanh/BETS 上作为开源软件包获得。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b36a/7875426/0c7e17024908/pcbi.1008223.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验