Suppr超能文献

通过 SARS-CoV-2 感染的所有阶段对循环病毒 RNA 进行敏感跟踪。

Sensitive tracking of circulating viral RNA through all stages of SARS-CoV-2 infection.

机构信息

Center for Cellular and Molecular Diagnostics, Tulane University School of Medicine, New Orleans, Louisiana, USA.

State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China.

出版信息

J Clin Invest. 2021 Apr 1;131(7). doi: 10.1172/JCI146031.

Abstract

BACKGROUNDCirculating severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) RNA may represent a more reliable indicator of infection than nasal RNA, but quantitative reverse transcription PCR (RT-qPCR) lacks diagnostic sensitivity for blood samples.METHODSA CRISPR-augmented RT-PCR assay that sensitively detects SARS-CoV-2 RNA was employed to analyze viral RNA kinetics in longitudinal plasma samples from nonhuman primates (NHPs) after virus exposure; to evaluate the utility of blood SARS-CoV-2 RNA detection for coronavirus disease 2019 (COVID-19) diagnosis in adults cases confirmed by nasal/nasopharyngeal swab RT-PCR results; and to identify suspected COVID-19 cases in pediatric and at-risk adult populations with negative nasal swab RT-qPCR results. All blood samples were analyzed by RT-qPCR to allow direct comparisons.RESULTSCRISPR-augmented RT-PCR consistently detected SARS-CoV-2 RNA in the plasma of experimentally infected NHPs from 1 to 28 days after infection, and these increases preceded and correlated with rectal swab viral RNA increases. In a patient cohort (n = 159), this blood-based assay demonstrated 91.2% diagnostic sensitivity and 99.2% diagnostic specificity versus a comparator RT-qPCR nasal/nasopharyngeal test, whereas RT-qPCR exhibited 44.1% diagnostic sensitivity and 100% specificity for the same blood samples. This CRISPR-augmented RT-PCR assay also accurately identified patients with COVID-19 using one or more negative nasal swab RT-qPCR results.CONCLUSIONResults of this study indicate that sensitive detection of SARS-CoV-2 RNA in blood by CRISPR-augmented RT-PCR permits accurate COVID-19 diagnosis, and can detect COVID-19 cases with transient or negative nasal swab RT-qPCR results, suggesting that this approach could improve COVID-19 diagnosis and the evaluation of SARS-CoV-2 infection clearance, and predict the severity of infection.TRIAL REGISTRATIONClinicalTrials.gov. NCT04358211.FUNDINGDepartment of Defense, National Institute of Allergy and Infectious Diseases, National Institute of Child Health and Human Development, and the National Center for Research Resources.

摘要

背景

循环严重急性呼吸综合征冠状病毒 2 (SARS-CoV-2) RNA 可能比鼻腔 RNA 更能可靠地反映感染情况,但定量逆转录聚合酶链反应 (RT-qPCR) 对血液样本的诊断灵敏度不足。

方法

采用一种 CRISPR 增强的 RT-PCR 检测方法,对暴露于病毒后非人类灵长类动物 (NHPs) 的纵向血浆样本中的病毒 RNA 动力学进行分析;评估血液 SARS-CoV-2 RNA 检测对经鼻/鼻咽拭子 RT-PCR 结果确诊的成人 2019 年冠状病毒病 (COVID-19) 诊断的实用性;并识别儿科和高危成人人群中经鼻拭子 RT-qPCR 结果为阴性但疑似 COVID-19 的病例。所有血液样本均通过 RT-qPCR 进行分析,以便直接比较。

结果

CRISPR 增强的 RT-PCR 从感染后 1 至 28 天,始终能在实验感染的 NHPs 血浆中检测到 SARS-CoV-2 RNA,这些增加先于并与直肠拭子病毒 RNA 增加相关。在患者队列中(n=159),与比较 RT-qPCR 鼻/鼻咽拭子检测相比,该血液检测法的诊断灵敏度为 91.2%,特异性为 99.2%,而 RT-qPCR 对相同血液样本的诊断灵敏度为 44.1%,特异性为 100%。该 CRISPR 增强的 RT-PCR 检测还能准确识别具有一个或多个阴性鼻拭子 RT-qPCR 结果的 COVID-19 患者。

结论

本研究结果表明,CRISPR 增强的 RT-PCR 对血液中 SARS-CoV-2 RNA 的灵敏检测可准确诊断 COVID-19,且能检测到具有一过性或阴性鼻拭子 RT-qPCR 结果的 COVID-19 病例,这提示该方法可能会改善 COVID-19 诊断以及对 SARS-CoV-2 感染清除的评估,并预测感染的严重程度。

试验注册

ClinicalTrials.gov,NCT04358211。

资助

美国国防部、美国国立过敏和传染病研究所、美国国立儿童健康与人类发育研究所以及美国国家研究资源中心。

相似文献

1
2
Low level SARS-CoV-2 RNA detected in plasma samples from a cohort of Nigerians: Implications for blood transfusion.
PLoS One. 2021 Jun 10;16(6):e0252611. doi: 10.1371/journal.pone.0252611. eCollection 2021.
3
CRISPR-based assay reveals SARS-CoV-2 RNA dynamic changes and redistribution patterns in non-human primate model.
Emerg Microbes Infect. 2022 Dec;11(1):629-638. doi: 10.1080/22221751.2022.2038020.
4
Comparison of SARS-CoV-2 PCR-Based Detection Using Saliva or Nasopharyngeal Swab Specimens in Asymptomatic Populations.
Microbiol Spectr. 2021 Sep 3;9(1):e0006221. doi: 10.1128/Spectrum.00062-21. Epub 2021 Aug 25.
5
Ultra-sensitive and high-throughput CRISPR-p owered COVID-19 diagnosis.
Biosens Bioelectron. 2020 Sep 15;164:112316. doi: 10.1016/j.bios.2020.112316. Epub 2020 May 23.
6
opvCRISPR: One-pot visual RT-LAMP-CRISPR platform for SARS-cov-2 detection.
Biosens Bioelectron. 2021 Jan 15;172:112766. doi: 10.1016/j.bios.2020.112766. Epub 2020 Oct 26.
7
Highly accurate and sensitive diagnostic detection of SARS-CoV-2 by digital PCR.
Talanta. 2021 Mar 1;224:121726. doi: 10.1016/j.talanta.2020.121726. Epub 2020 Oct 27.
8
Development and evaluation of a Novel RT-PCR system for reliable and rapid SARS-CoV-2 screening of blood donations.
Transfusion. 2020 Dec;60(12):2952-2961. doi: 10.1111/trf.16049. Epub 2020 Sep 10.
9
Highly sensitive extraction-free saliva-based molecular assay for rapid diagnosis of SARS-CoV-2.
J Clin Microbiol. 2024 Jun 12;62(6):e0060024. doi: 10.1128/jcm.00600-24. Epub 2024 May 24.
10
Advancing COVID-19 diagnostics: rapid detection of intact SARS-CoV-2 using viability RT-PCR assay.
Microbiol Spectr. 2024 Sep 3;12(9):e0016024. doi: 10.1128/spectrum.00160-24. Epub 2024 Jul 22.

引用本文的文献

1
A naked-eye biosensing system based on one-pot RPA-CRISPR/Cas12a driver G4-hemin self-assembly for .
Front Chem. 2025 Aug 7;13:1631086. doi: 10.3389/fchem.2025.1631086. eCollection 2025.
3
CRISPR for companion diagnostics in low-resource settings.
Lab Chip. 2024 Oct 9;24(20):4717-4740. doi: 10.1039/d4lc00340c.
4
Altered COVID-19 immunity in children with asthma by atopic status.
J Allergy Clin Immunol Glob. 2024 Feb 29;3(2):100236. doi: 10.1016/j.jacig.2024.100236. eCollection 2024 May.
5
Serum Cell-Free DNA-based Detection of Complex Infection.
Am J Respir Crit Care Med. 2024 May 15;209(10):1246-1254. doi: 10.1164/rccm.202303-0401OC.
6
CRISPR Assays for Disease Diagnosis: Progress to and Barriers Remaining for Clinical Applications.
Adv Sci (Weinh). 2023 Jul;10(20):e2301697. doi: 10.1002/advs.202301697. Epub 2023 May 10.
7
Development of a CRISPR-Cas12a rapid diagnostic for human cytomegalovirus.
Antiviral Res. 2023 Jul;215:105624. doi: 10.1016/j.antiviral.2023.105624. Epub 2023 May 5.
8
In Silico Evaluation of CRISPR-Based Assays for Effective Detection of SARS-CoV-2.
Pathogens. 2022 Aug 25;11(9):968. doi: 10.3390/pathogens11090968.
10
Proteomic and Metabolomic Characterization of SARS-CoV-2-Infected Cynomolgus Macaque at Early Stage.
Front Immunol. 2022 Jul 12;13:954121. doi: 10.3389/fimmu.2022.954121. eCollection 2022.

本文引用的文献

3
SARS-CoV-2 viral load is associated with increased disease severity and mortality.
Nat Commun. 2020 Oct 30;11(1):5493. doi: 10.1038/s41467-020-19057-5.
4
Safety and efficacy of COVID-19 convalescent plasma in severe pulmonary disease: A report of 17 patients.
Transfus Med. 2021 Jun;31(3):217-220. doi: 10.1111/tme.12729. Epub 2020 Oct 19.
5
Animal models for COVID-19.
Nature. 2020 Oct;586(7830):509-515. doi: 10.1038/s41586-020-2787-6. Epub 2020 Sep 23.
6
Detection of SARS-CoV-2 with SHERLOCK One-Pot Testing.
N Engl J Med. 2020 Oct 8;383(15):1492-1494. doi: 10.1056/NEJMc2026172. Epub 2020 Sep 16.
9
Aerosol transmission of SARS-CoV-2? Evidence, prevention and control.
Environ Int. 2020 Nov;144:106039. doi: 10.1016/j.envint.2020.106039. Epub 2020 Aug 7.
10
Comparison of nonhuman primates identified the suitable model for COVID-19.
Signal Transduct Target Ther. 2020 Oct 19;5(1):157. doi: 10.1038/s41392-020-00269-6.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验