Suppr超能文献

YSL3 介导的铜分布对于拟南芥的育性、种子大小和蛋白质积累是必需的。

YSL3-mediated copper distribution is required for fertility, seed size and protein accumulation in Brachypodium.

机构信息

Soil and Crop Sciences Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA.

Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Sichuan 611130, China.

出版信息

Plant Physiol. 2021 May 27;186(1):655-676. doi: 10.1093/plphys/kiab054.

Abstract

Addressing the looming global food security crisis requires the development of high-yielding crops. In agricultural soils, deficiency in the micronutrient copper significantly decreases grain yield in wheat (Triticum aestivum), a globally important crop. In cereals, grain yield is determined by inflorescence architecture, flower fertility, grain size, and weight. Whether copper is involved in these processes, and how it is delivered to the reproductive organs is not well understood. We show that copper deficiency alters not only the grain set but also flower development in both wheat and its recognized model, Brachypodium distachyon. We then show that the Brachypodium yellow stripe-like 3 (YSL3) transporter localizes to the phloem, transports copper in frog (Xenopus laevis) oocytes, and facilitates copper delivery to reproductive organs and grains. Failure to deliver copper, but not iron, zinc, or manganese to these structures in the ysl3 CRISPR-Cas9 mutant results in delayed flowering, altered inflorescence architecture, reduced floret fertility, grain size, weight, and protein accumulation. These defects are rescued by copper supplementation and are complemented by YSL3 cDNA. This knowledge will help to devise sustainable approaches for improving grain yield in regions where soil quality is a major obstacle for crop production. Copper distribution by a phloem-localized transporter is essential for the transition to flowering, inflorescence architecture, floret fertility, size, weight, and protein accumulation in seeds.

摘要

解决迫在眉睫的全球粮食安全危机需要开发高产作物。在农业土壤中,微量营养素铜的缺乏会显著降低小麦(Triticum aestivum)的谷物产量,小麦是一种全球重要的作物。在谷类作物中,谷物产量由花序结构、花的育性、籽粒大小和重量决定。铜是否参与这些过程,以及它如何被输送到生殖器官尚不清楚。我们表明,铜缺乏不仅改变了籽粒结实率,还改变了小麦及其公认模式植物短柄草(Brachypodium distachyon)的花发育。然后我们表明,Brachypodium 类黄酮 3(YSL3)转运蛋白定位于韧皮部,在青蛙(Xenopus laevis)卵母细胞中运输铜,并促进铜向生殖器官和籽粒的输送。在 ysl3 CRISPR-Cas9 突变体中,未能将铜而不是铁、锌或锰输送到这些结构中,导致开花延迟、花序结构改变、小花育性降低、籽粒大小、重量和蛋白质积累减少。这些缺陷可以通过铜补充来挽救,并可以通过 YSL3 cDNA 来互补。这些知识将有助于设计在土壤质量是作物生产主要障碍的地区提高谷物产量的可持续方法。由韧皮部定位的转运蛋白分配铜对于开花、花序结构、小花育性、大小、重量和种子中蛋白质积累的转变至关重要。

相似文献

3
The role of the yellow stripe-like transporter BdYSL3 in copper homeostasis in Brachypodium.
Plant Physiol. 2021 May 27;186(1):204-205. doi: 10.1093/plphys/kiab092.
4
Thermal stress effects on grain yield in Brachypodium distachyon occur via H2A.Z-nucleosomes.
Genome Biol. 2013 Jun 25;14(6):R65. doi: 10.1186/gb-2013-14-6-r65.
6
Brachypodium distachyon UNICULME4 and LAXATUM-A are redundantly required for development.
Plant Physiol. 2022 Jan 20;188(1):363-381. doi: 10.1093/plphys/kiab456.
9
A comprehensive overview of grain development in Brachypodium distachyon variety Bd21.
J Exp Bot. 2012 Jan;63(2):739-55. doi: 10.1093/jxb/err298. Epub 2011 Oct 20.
10
Programmed Cell Death in Developing Grain.
Int J Mol Sci. 2021 Aug 23;22(16):9086. doi: 10.3390/ijms22169086.

引用本文的文献

1
Biggest of tinies: natural variation in seed size and mineral distribution in the ancient crop tef [ (Zucc.) Trotter].
Front Plant Sci. 2024 Dec 12;15:1485819. doi: 10.3389/fpls.2024.1485819. eCollection 2024.
2
A novel major QTL underlying grain copper concentration in common wheat (Triticum aestivum L.).
BMC Genomics. 2024 Dec 18;25(1):1198. doi: 10.1186/s12864-024-11132-1.
3
Application of genome editing in plant reproductive biology: recent advances and challenges.
Plant Reprod. 2024 Dec;37(4):441-462. doi: 10.1007/s00497-024-00506-w. Epub 2024 Jul 2.
5
Unlocking Nature's Clock: CRISPR Technology in Flowering Time Engineering.
Plants (Basel). 2023 Nov 29;12(23):4020. doi: 10.3390/plants12234020.
6
, A Metal Transporter Gene of Alfalfa, Increases Iron Accumulation and Benefits Cadmium Resistance.
Plants (Basel). 2023 Oct 5;12(19):3485. doi: 10.3390/plants12193485.
7
Molecular Responses of Red Ripe Tomato Fruit to Copper Deficiency Stress.
Plants (Basel). 2023 May 22;12(10):2062. doi: 10.3390/plants12102062.
8
Nicotianamine: A Key Player in Metal Homeostasis and Hyperaccumulation in Plants.
Int J Mol Sci. 2023 Jun 28;24(13):10822. doi: 10.3390/ijms241310822.
10
The key micronutrient copper orchestrates broad-spectrum virus resistance in rice.
Sci Adv. 2022 Jul;8(26):eabm0660. doi: 10.1126/sciadv.abm0660. Epub 2022 Jul 1.

本文引用的文献

1
Copper deficiency alters shoot architecture and reduces fertility of both gynoecium and androecium in .
Plant Direct. 2020 Nov 29;4(11):e00288. doi: 10.1002/pld3.288. eCollection 2020 Nov.
2
The iron deficiency response in requires the phosphorylated transcription factor URI.
Proc Natl Acad Sci U S A. 2019 Dec 10;116(50):24933-24942. doi: 10.1073/pnas.1916892116. Epub 2019 Nov 27.
4
Genetic strategies for improving crop yields.
Nature. 2019 Nov;575(7781):109-118. doi: 10.1038/s41586-019-1679-0. Epub 2019 Nov 6.
5
Control of meristem determinacy by trehalose 6-phosphate phosphatases is uncoupled from enzymatic activity.
Nat Plants. 2019 Apr;5(4):352-357. doi: 10.1038/s41477-019-0394-z. Epub 2019 Apr 1.
6
A reductionist approach to dissecting grain weight and yield in wheat.
J Integr Plant Biol. 2019 Mar;61(3):337-358. doi: 10.1111/jipb.12741. Epub 2019 Jan 15.
7
Intersection of Iron and Copper Metabolism in the Mammalian Intestine and Liver.
Compr Physiol. 2018 Sep 14;8(4):1433-1461. doi: 10.1002/cphy.c170045.
8
: A Monocot Grass Model Genus for Plant Biology.
Plant Cell. 2018 Aug;30(8):1673-1694. doi: 10.1105/tpc.18.00083. Epub 2018 Jul 11.
9
OsYSL16 is Required for Preferential Cu Distribution to Floral Organs in Rice.
Plant Cell Physiol. 2018 Oct 1;59(10):2039-2051. doi: 10.1093/pcp/pcy124.
10
Control of grain size in rice.
Plant Reprod. 2018 Sep;31(3):237-251. doi: 10.1007/s00497-018-0333-6. Epub 2018 Mar 10.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验