Suppr超能文献

细菌细胞分裂蛋白 FtsZ 动态生物分子凝聚物的组装。

Assembly of bacterial cell division protein FtsZ into dynamic biomolecular condensates.

机构信息

Centro de Investigaciones Biológicas Margarita Salas, Consejo Superior de Investigaciones Científicas (CSIC), 28040 Madrid, Spain.

Centro de Investigaciones Biológicas Margarita Salas, Consejo Superior de Investigaciones Científicas (CSIC), 28040 Madrid, Spain.

出版信息

Biochim Biophys Acta Mol Cell Res. 2021 Apr;1868(5):118986. doi: 10.1016/j.bbamcr.2021.118986. Epub 2021 Feb 11.

Abstract

Biomolecular condensation through phase separation may be a novel mechanism to regulate bacterial processes, including cell division. Previous work revealed that FtsZ, a protein essential for cytokinesis in most bacteria, forms biomolecular condensates with SlmA, a protein that protects the chromosome from damage inflicted by the division machinery in Escherichia coli. The absence of condensates composed solely of FtsZ under the conditions used in that study suggested this mechanism was restricted to nucleoid occlusion by SlmA or to bacteria containing this protein. Here we report that FtsZ alone, under physiologically relevant conditions, can demix into condensates in bulk and when encapsulated in synthetic cell-like systems generated by microfluidics. Condensate assembly depends on FtsZ being in the GDP-bound state and on conditions mimicking the crowded environment of the cytoplasm that promote its oligomerization. Condensates are dynamic and reversibly convert into filaments upon GTP addition. Notably, FtsZ lacking its C-terminal disordered region, a structural element likely to favor biomolecular condensation, also forms condensates, albeit less efficiently. The inherent tendency of FtsZ to form condensates susceptible to modulation by physiological factors, including binding partners, suggests that such mechanisms may play a more general role in bacterial division than initially envisioned.

摘要

通过相分离进行生物分子凝聚可能是调节细菌过程(包括细胞分裂)的一种新机制。以前的工作表明,FtsZ 是大多数细菌细胞分裂所必需的蛋白质,它与 SlmA 形成生物分子凝聚体,SlmA 可保护染色体免受分裂机制对大肠杆菌造成的损伤。在该研究中使用的条件下,仅由 FtsZ 组成的凝聚物不存在,这表明这种机制仅限于 SlmA 对核区的阻断或含有该蛋白的细菌。在这里,我们报告说,在生理相关条件下,FtsZ 可以单独在本体中以及在通过微流控技术生成的合成细胞样系统中进行凝聚。凝聚物的组装取决于 FtsZ 处于 GDP 结合状态以及模拟细胞质拥挤环境的条件,这有利于其寡聚化。凝聚物是动态的,并在添加 GTP 时可逆地转化为纤维。值得注意的是,缺乏其 C 末端无序区的 FtsZ(一种可能有利于生物分子凝聚的结构元件)也能形成凝聚物,尽管效率较低。FtsZ 形成凝聚物的固有趋势容易受到生理因素(包括结合伴侣)的调节,这表明这种机制在细菌分裂中的作用可能比最初设想的更为普遍。

相似文献

1
Assembly of bacterial cell division protein FtsZ into dynamic biomolecular condensates.
Biochim Biophys Acta Mol Cell Res. 2021 Apr;1868(5):118986. doi: 10.1016/j.bbamcr.2021.118986. Epub 2021 Feb 11.
3
Bacterial FtsZ protein forms phase-separated condensates with its nucleoid-associated inhibitor SlmA.
EMBO Rep. 2019 Jan;20(1). doi: 10.15252/embr.201845946. Epub 2018 Dec 6.
5
The Nucleoid Occlusion Protein SlmA Binds to Lipid Membranes.
mBio. 2020 Sep 1;11(5):e02094-20. doi: 10.1128/mBio.02094-20.
6
Dynamics of interdomain rotation facilitates FtsZ filament assembly.
J Biol Chem. 2024 Jun;300(6):107336. doi: 10.1016/j.jbc.2024.107336. Epub 2024 May 7.
7
FtsZ placement in nucleoid-free bacteria.
PLoS One. 2014 Mar 17;9(3):e91984. doi: 10.1371/journal.pone.0091984. eCollection 2014.
8
Molecular mechanism by which the nucleoid occlusion factor, SlmA, keeps cytokinesis in check.
EMBO J. 2011 Jan 5;30(1):154-64. doi: 10.1038/emboj.2010.288. Epub 2010 Nov 26.
9
High-resolution crystal structures of Escherichia coli FtsZ bound to GDP and GTP.
Acta Crystallogr F Struct Biol Commun. 2020 Feb 1;76(Pt 2):94-102. doi: 10.1107/S2053230X20001132. Epub 2020 Feb 5.

引用本文的文献

1
Interplay between membranes and biomolecular condensates in the regulation of membrane-associated cellular processes.
Exp Mol Med. 2024 Nov;56(11):2357-2364. doi: 10.1038/s12276-024-01337-5. Epub 2024 Nov 1.
2
Macromolecular Crowding, Phase Separation, and Homeostasis in the Orchestration of Bacterial Cellular Functions.
Chem Rev. 2024 Feb 28;124(4):1899-1949. doi: 10.1021/acs.chemrev.3c00622. Epub 2024 Feb 8.
3
RNase E biomolecular condensates stimulate PNPase activity.
Sci Rep. 2023 Aug 9;13(1):12937. doi: 10.1038/s41598-023-39565-w.
4
Insights into the assembly and regulation of the bacterial divisome.
Nat Rev Microbiol. 2024 Jan;22(1):33-45. doi: 10.1038/s41579-023-00942-x. Epub 2023 Jul 31.
7
In vitro assembly, positioning and contraction of a division ring in minimal cells.
Nat Commun. 2022 Oct 15;13(1):6098. doi: 10.1038/s41467-022-33679-x.
8
Getting Closer to Decrypting the Phase Transitions of Bacterial Biomolecules.
Biomolecules. 2022 Jun 28;12(7):907. doi: 10.3390/biom12070907.
9
Interactions between Phase-Separated Liquids and Membrane Surfaces.
Appl Sci (Basel). 2021 Feb;11(3). doi: 10.3390/app11031288. Epub 2021 Jan 31.
10
FtsZ Interactions and Biomolecular Condensates as Potential Targets for New Antibiotics.
Antibiotics (Basel). 2021 Mar 4;10(3):254. doi: 10.3390/antibiotics10030254.

本文引用的文献

1
The emergence of phase separation as an organizing principle in bacteria.
Biophys J. 2021 Apr 6;120(7):1123-1138. doi: 10.1016/j.bpj.2020.09.023. Epub 2020 Sep 28.
2
Drops and fibers - how biomolecular condensates and cytoskeletal filaments influence each other.
Emerg Top Life Sci. 2020 Dec 11;4(3):247-261. doi: 10.1042/ETLS20190174.
3
The Nucleoid Occlusion Protein SlmA Binds to Lipid Membranes.
mBio. 2020 Sep 1;11(5):e02094-20. doi: 10.1128/mBio.02094-20.
4
ATP-Driven Separation of Liquid Phase Condensates in Bacteria.
Mol Cell. 2020 Jul 16;79(2):293-303.e4. doi: 10.1016/j.molcel.2020.06.034.
5
Clusters of bacterial RNA polymerase are biomolecular condensates that assemble through liquid-liquid phase separation.
Proc Natl Acad Sci U S A. 2020 Aug 4;117(31):18540-18549. doi: 10.1073/pnas.2005019117. Epub 2020 Jul 16.
6
Multivalent interactions between CsoS2 and Rubisco mediate α-carboxysome formation.
Nat Struct Mol Biol. 2020 Mar;27(3):281-287. doi: 10.1038/s41594-020-0387-7. Epub 2020 Mar 2.
7
Diffusion and capture permits dynamic coupling between treadmilling FtsZ filaments and cell division proteins.
Nat Microbiol. 2020 Mar;5(3):407-417. doi: 10.1038/s41564-019-0657-5. Epub 2020 Jan 20.
8
Evidence for and against Liquid-Liquid Phase Separation in the Nucleus.
Noncoding RNA. 2019 Nov 1;5(4):50. doi: 10.3390/ncrna5040050.
9
The Control Centers of Biomolecular Phase Separation: How Membrane Surfaces, PTMs, and Active Processes Regulate Condensation.
Mol Cell. 2019 Oct 17;76(2):295-305. doi: 10.1016/j.molcel.2019.09.016. Epub 2019 Oct 8.
10
New insight into the mechanisms protecting bacteria during desiccation.
Curr Genet. 2020 Apr;66(2):313-318. doi: 10.1007/s00294-019-01036-z. Epub 2019 Sep 26.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验