Suppr超能文献

在大规模公共合作玉米实验中,优势和基因型-环境互作对粒重变化的重要性。

The importance of dominance and genotype-by-environment interactions on grain yield variation in a large-scale public cooperative maize experiment.

机构信息

Program in Genetics, North Carolina State University, Raleigh, NC 27695, USA.

Department of Crop and Soil Sciences, North Carolina State University, Raleigh, NC 27695, USA.

出版信息

G3 (Bethesda). 2021 Feb 9;11(2). doi: 10.1093/g3journal/jkaa050.

Abstract

High-dimensional and high-throughput genomic, field performance, and environmental data are becoming increasingly available to crop breeding programs, and their integration can facilitate genomic prediction within and across environments and provide insights into the genetic architecture of complex traits and the nature of genotype-by-environment interactions. To partition trait variation into additive and dominance (main effect) genetic and corresponding genetic-by-environment variances, and to identify specific environmental factors that influence genotype-by-environment interactions, we curated and analyzed genotypic and phenotypic data on 1918 maize (Zea mays L.) hybrids and environmental data from 65 testing environments. For grain yield, dominance variance was similar in magnitude to additive variance, and genetic-by-environment variances were more important than genetic main effect variances. Models involving both additive and dominance relationships best fit the data and modeling unique genetic covariances among all environments provided the best characterization of the genotype-by-environment interaction patterns. Similarity of relative hybrid performance among environments was modeled as a function of underlying weather variables, permitting identification of weather covariates driving correlations of genetic effects across environments. The resulting models can be used for genomic prediction of mean hybrid performance across populations of environments tested or for environment-specific predictions. These results can also guide efforts to incorporate high-throughput environmental data into genomic prediction models and predict values in new environments characterized with the same environmental characteristics.

摘要

高维、高通量的基因组、田间表现和环境数据正越来越多地应用于作物育种计划,整合这些数据可以促进同一和不同环境下的基因组预测,并深入了解复杂性状的遗传结构和基因型-环境互作的本质。为了将性状变异划分为加性和显性(主效)遗传以及相应的遗传-环境方差,并确定影响基因型-环境互作的特定环境因素,我们整理和分析了 1918 个玉米(Zea mays L.)杂交种的基因型和表型数据以及 65 个测试环境的环境数据。对于籽粒产量,显性方差与加性方差大小相当,遗传-环境方差比遗传主效方差更重要。涉及加性和显性关系的模型最适合数据,对所有环境中独特的遗传协方差进行建模可以最好地描述基因型-环境互作模式。环境间相对杂种表现的相似性被建模为基础天气变量的函数,允许识别驱动遗传效应在环境间相关性的天气协变量。由此产生的模型可用于预测测试环境群体中平均杂种表现的基因组,也可用于特定环境的预测。这些结果还可以指导将高通量环境数据纳入基因组预测模型的工作,并预测具有相同环境特征的新环境中的值。

相似文献

4
Genomic models with genotype × environment interaction for predicting hybrid performance: an application in maize hybrids.
Theor Appl Genet. 2017 Jul;130(7):1431-1440. doi: 10.1007/s00122-017-2898-0. Epub 2017 Apr 11.
7
Analysis of genotype-by-environment interactions in a maize mapping population.
G3 (Bethesda). 2022 Mar 4;12(3). doi: 10.1093/g3journal/jkac013.
8
Dominance Effects and Functional Enrichments Improve Prediction of Agronomic Traits in Hybrid Maize.
Genetics. 2020 May;215(1):215-230. doi: 10.1534/genetics.120.303025. Epub 2020 Mar 9.
9
Modeling copy number variation in the genomic prediction of maize hybrids.
Theor Appl Genet. 2019 Jan;132(1):273-288. doi: 10.1007/s00122-018-3215-2. Epub 2018 Oct 31.
10
Genomic prediction applied to multiple traits and environments in second season maize hybrids.
Heredity (Edinb). 2020 Aug;125(1-2):60-72. doi: 10.1038/s41437-020-0321-0. Epub 2020 May 29.

引用本文的文献

1
7
MegaLMM improves genomic predictions in new environments using environmental covariates.
Genetics. 2025 Jan 8;229(1):1-41. doi: 10.1093/genetics/iyae171.
9
Genetic analysis of yield components in buckwheat using high-throughput sequencing analysis and wild resource populations.
Physiol Mol Biol Plants. 2024 Aug;30(8):1313-1328. doi: 10.1007/s12298-024-01491-0. Epub 2024 Jul 22.
10

本文引用的文献

1
Dominance Effects and Functional Enrichments Improve Prediction of Agronomic Traits in Hybrid Maize.
Genetics. 2020 May;215(1):215-230. doi: 10.1534/genetics.120.303025. Epub 2020 Mar 9.
3
Combining Crop Growth Modeling and Statistical Genetic Modeling to Evaluate Phenotyping Strategies.
Front Plant Sci. 2019 Nov 27;10:1491. doi: 10.3389/fpls.2019.01491. eCollection 2019.
5
Genomic prediction of maize yield across European environmental conditions.
Nat Genet. 2019 Jun;51(6):952-956. doi: 10.1038/s41588-019-0414-y. Epub 2019 May 20.
7
Optimal Designs for Genomic Selection in Hybrid Crops.
Mol Plant. 2019 Mar 4;12(3):390-401. doi: 10.1016/j.molp.2018.12.022. Epub 2019 Jan 6.
8
Integrating genomic-enabled prediction and high-throughput phenotyping in breeding for climate-resilient bread wheat.
Theor Appl Genet. 2019 Jan;132(1):177-194. doi: 10.1007/s00122-018-3206-3. Epub 2018 Oct 19.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验