Suppr超能文献

利用碱基编辑筛选技术对 DNA 损伤反应变体进行功能研究。

Functional interrogation of DNA damage response variants with base editing screens.

机构信息

Department of Genetics and Development, Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY 10032, USA.

Department of Systems Biology, Columbia University Irving Medical Center, New York, NY 10032, USA; Department of Biomedical Informatics, Columbia University Irving Medical Center, New York, NY 10032, USA.

出版信息

Cell. 2021 Feb 18;184(4):1081-1097.e19. doi: 10.1016/j.cell.2021.01.041.

Abstract

Mutations in DNA damage response (DDR) genes endanger genome integrity and predispose to cancer and genetic disorders. Here, using CRISPR-dependent cytosine base editing screens, we identify > 2,000 sgRNAs that generate nucleotide variants in 86 DDR genes, resulting in altered cellular fitness upon DNA damage. Among those variants, we discover loss- and gain-of-function mutants in the Tudor domain of the DDR regulator 53BP1 that define a non-canonical surface required for binding the deubiquitinase USP28. Moreover, we characterize variants of the TRAIP ubiquitin ligase that define a domain, whose loss renders cells resistant to topoisomerase I inhibition. Finally, we identify mutations in the ATM kinase with opposing genome stability phenotypes and loss-of-function mutations in the CHK2 kinase previously categorized as variants of uncertain significance for breast cancer. We anticipate that this resource will enable the discovery of additional DDR gene functions and expedite studies of DDR variants in human disease.

摘要

DNA 损伤反应 (DDR) 基因的突变会危及基因组的完整性,并导致癌症和遗传疾病。在这里,我们使用依赖于 CRISPR 的胞嘧啶碱基编辑筛选,鉴定出了超过 2000 个 sgRNA,这些 sgRNA 会在 86 个 DDR 基因中产生核苷酸变异,导致细胞在 DNA 损伤后适应性改变。在这些变体中,我们发现 DDR 调节因子 53BP1 的 Tudor 结构域中的失活和功能获得性突变体,定义了一个非典型的表面,该表面对于结合去泛素化酶 USP28 是必需的。此外,我们还鉴定了 TRAIP 泛素连接酶的变体,这些变体定义了一个结构域,其缺失会使细胞对拓扑异构酶 I 抑制剂产生抗性。最后,我们鉴定了 ATM 激酶的突变,这些突变具有相反的基因组稳定性表型,以及 CHK2 激酶的失活突变,后者之前被归类为乳腺癌意义不明的变体。我们预计,这一资源将能够发现更多的 DDR 基因功能,并加速对人类疾病中 DDR 变体的研究。

相似文献

1
Functional interrogation of DNA damage response variants with base editing screens.
Cell. 2021 Feb 18;184(4):1081-1097.e19. doi: 10.1016/j.cell.2021.01.041.
2
53BP1 Integrates DNA Repair and p53-Dependent Cell Fate Decisions via Distinct Mechanisms.
Mol Cell. 2016 Oct 6;64(1):51-64. doi: 10.1016/j.molcel.2016.08.002. Epub 2016 Aug 18.
5
Inhibition of 53BP1 favors homology-dependent DNA repair and increases CRISPR-Cas9 genome-editing efficiency.
Nat Biotechnol. 2018 Jan;36(1):95-102. doi: 10.1038/nbt.4021. Epub 2017 Nov 27.
6
USP14 regulates DNA damage repair by targeting RNF168-dependent ubiquitination.
Autophagy. 2018;14(11):1976-1990. doi: 10.1080/15548627.2018.1496877. Epub 2018 Aug 10.
8
A CRISPR-based base-editing screen for the functional assessment of BRCA1 variants.
Oncogene. 2020 Jan;39(1):30-35. doi: 10.1038/s41388-019-0968-2. Epub 2019 Aug 29.
9
ATDC (Ataxia Telangiectasia Group D Complementing) Promotes Radioresistance through an Interaction with the RNF8 Ubiquitin Ligase.
J Biol Chem. 2015 Nov 6;290(45):27146-27157. doi: 10.1074/jbc.M115.665489. Epub 2015 Sep 17.
10
A USP28-53BP1-p53-p21 signaling axis arrests growth after centrosome loss or prolonged mitosis.
J Cell Biol. 2016 Jul 18;214(2):143-53. doi: 10.1083/jcb.201604054.

引用本文的文献

1
Genetic mechanisms of resistance to targeted KRAS inhibition.
bioRxiv. 2025 Aug 4:2025.08.04.668444. doi: 10.1101/2025.08.04.668444.
2
Emerging trends in prime editing for precision genome editing.
Exp Mol Med. 2025 Jul;57(7):1381-1391. doi: 10.1038/s12276-025-01463-8. Epub 2025 Jul 31.
4
CRISPR screening approaches in breast cancer research.
Cancer Metastasis Rev. 2025 Jul 12;44(3):59. doi: 10.1007/s10555-025-10275-1.
5
Toward optimizing diversifying base editors for high-throughput mutational scanning studies.
Nucleic Acids Res. 2025 Jun 20;53(12). doi: 10.1093/nar/gkaf620.
6
RNA-coupled CRISPR Screens Reveal ZNF207 as a Regulator of LMNA Aberrant Splicing in Progeria.
bioRxiv. 2025 Apr 26:2025.04.25.648738. doi: 10.1101/2025.04.25.648738.
8
USP37 prevents premature disassembly of stressed replisomes by TRAIP.
Nat Commun. 2025 Jun 18;16(1):5333. doi: 10.1038/s41467-025-60139-z.
9
UNC0638 inhibits SARS-CoV-2 entry by blocking cathepsin L maturation.
J Virol. 2025 Jun 18:e0074125. doi: 10.1128/jvi.00741-25.
10
BEscreen: a versatile toolkit to design base editing libraries.
Nucleic Acids Res. 2025 Jul 7;53(W1):W68-W72. doi: 10.1093/nar/gkaf406.

本文引用的文献

1
Inference of CRISPR Edits from Sanger Trace Data.
CRISPR J. 2022 Feb;5(1):123-130. doi: 10.1089/crispr.2021.0113. Epub 2022 Feb 2.
2
Massively parallel assessment of human variants with base editor screens.
Cell. 2021 Feb 18;184(4):1064-1080.e20. doi: 10.1016/j.cell.2021.01.012.
3
In vivo base editing rescues Hutchinson-Gilford progeria syndrome in mice.
Nature. 2021 Jan;589(7843):608-614. doi: 10.1038/s41586-020-03086-7. Epub 2021 Jan 6.
4
Perturbing proteomes at single residue resolution using base editing.
Nat Commun. 2020 Apr 20;11(1):1871. doi: 10.1038/s41467-020-15796-7.
6
Unconstrained genome targeting with near-PAMless engineered CRISPR-Cas9 variants.
Science. 2020 Apr 17;368(6488):290-296. doi: 10.1126/science.aba8853. Epub 2020 Mar 26.
7
Functional analysis of genetic variants in the high-risk breast cancer susceptibility gene PALB2.
Nat Commun. 2019 Nov 22;10(1):5296. doi: 10.1038/s41467-019-13194-2.
8
Functional characterization of 84 PALB2 variants of uncertain significance.
Genet Med. 2020 Mar;22(3):622-632. doi: 10.1038/s41436-019-0682-z. Epub 2019 Oct 21.
10
A consensus set of genetic vulnerabilities to ATR inhibition.
Open Biol. 2019 Sep 27;9(9):190156. doi: 10.1098/rsob.190156. Epub 2019 Sep 11.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验