Laboratory of Bioinformatics, Artificial Intelligence Center for Health and Biomedical Research, National Institutes of Biomedical Innovation, Health and Nutrition, Osaka 567-0085, Japan.
The Center for Data Science Education and Research, Shiga University, Hikone, Shiga 522-8522, Japan.
J Med Chem. 2021 Mar 11;64(5):2725-2738. doi: 10.1021/acs.jmedchem.0c02011. Epub 2021 Feb 23.
Developing models to predict the brain penetration of drugs remains a challenge owing to the intricate involvement of multiple transport systems in the blood brain barrier, and the necessity to consider a combination of multiple pharmacokinetic parameters. P-glycoprotein (P-gp) is one of the most important transporters affecting the brain penetration of drugs. Here, we developed an prediction model for P-gp efflux potential in brain capillary endothelial cells (BCEC). Using the representative values of P-gp net efflux ratio in BCEC, we proposed a novel prediction system for brain-to-plasma concentration ratio () and unbound brain-to-plasma concentration ratio () of P-gp substrates. We validated the proposed prediction system using newly acquired experimental brain penetration data of 28 P-gp substrates. Our system improved the predictive accuracy of brain penetration of drugs using only chemical structure information compared with that of previous studies.
开发能够预测药物脑内渗透性的模型仍然是一项挑战,这是因为血脑屏障中涉及多种转运系统,并且需要考虑多种药代动力学参数的组合。P 糖蛋白(P-gp)是影响药物脑内渗透性的最重要的转运体之一。在此,我们开发了一种用于预测脑毛细血管内皮细胞(BCEC)中 P-gp 外排潜能的预测模型。利用 BCEC 中 P-gp 净外排比的代表值,我们提出了一种新的预测系统,用于预测 P-gp 底物的脑-血浆浓度比()和未结合的脑-血浆浓度比()。我们使用新获得的 28 种 P-gp 底物的实验性脑渗透数据对所提出的预测系统进行了验证。与之前的研究相比,我们的系统仅使用化学结构信息就能提高药物脑内渗透性的预测准确性。