Suppr超能文献

肿瘤抑制基因中的正向选择和基因复制揭示了鲸类动物抵抗癌症的线索。

Positive selection and gene duplications in tumour suppressor genes reveal clues about how cetaceans resist cancer.

作者信息

Tejada-Martinez Daniela, de Magalhães João Pedro, Opazo Juan C

机构信息

Programa de Doctorado en Ciencias mención Ecología y Evolución, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile.

Instituto de Ciencias Ambientales y Evolutivas, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile.

出版信息

Proc Biol Sci. 2021 Feb 24;288(1945):20202592. doi: 10.1098/rspb.2020.2592.

Abstract

Cetaceans are the longest-living species of mammals and the largest in the history of the planet. They have developed mechanisms against diseases such cancer, although the underlying molecular bases of these remain unknown. The goal of this study was to investigate the role of natural selection in the evolution of 1077 tumour suppressor genes (TSGs) in cetaceans. We used a comparative genomic approach to analyse two sources of molecular variation in the form of / rates and gene copy number variation. We found a signal of positive selection in the ancestor of cetaceans within the gene, an important regulator of DNA damage, tumour dissemination and immune system. Further, in the ancestor of baleen whales, we found six genes exhibiting positive selection relating to diseases such as breast carcinoma, lung neoplasm () and leukaemia (). The TSGs turnover rate (gene gain and loss) was almost 2.4-fold higher in cetaceans when compared with other mammals, and notably even faster in baleen whales. The molecular variants in TSGs found in baleen whales, combined with the faster gene turnover rate, could have favoured the evolution of their particular traits of anti-cancer resistance, gigantism and longevity. Additionally, we report 71 genes with duplications, of which 11 genes are linked to longevity (e.g. and ) and are important regulators of senescence, cell proliferation and metabolism. Overall, these results provide evolutionary evidence that natural selection in TSGs could act on species with large body sizes and extended lifespan, providing novel insights into the genetic basis of disease resistance.

摘要

鲸类是寿命最长的哺乳动物物种,也是地球上历史上体型最大的哺乳动物。它们已经进化出了对抗癌症等疾病的机制,尽管其潜在的分子基础尚不清楚。本研究的目的是调查自然选择在鲸类1077个肿瘤抑制基因(TSG)进化中的作用。我们采用比较基因组学方法,以/速率和基因拷贝数变异的形式分析分子变异的两个来源。我们在鲸类祖先的基因中发现了正选择信号,该基因是DNA损伤、肿瘤扩散和免疫系统的重要调节因子。此外,在须鲸的祖先中,我们发现有六个基因表现出与乳腺癌、肺癌()和白血病()等疾病相关的正选择。与其他哺乳动物相比,鲸类的TSG周转率(基因获得和丢失)几乎高出2.4倍,在须鲸中尤其更快。在须鲸中发现的TSG分子变异,再加上更快的基因周转率,可能有利于它们抗癌抗性、巨大体型和长寿等特殊性状的进化。此外,我们报告了71个有重复的基因,其中11个基因与长寿相关(如和),是衰老、细胞增殖和新陈代谢的重要调节因子。总体而言,这些结果提供了进化证据,表明TSG中的自然选择可能作用于体型大、寿命长的物种,为抗病性的遗传基础提供了新的见解。

相似文献

2
Insights into body size variation in cetaceans from the evolution of body-size-related genes.
BMC Evol Biol. 2019 Jul 27;19(1):157. doi: 10.1186/s12862-019-1461-9.
3
Phylogeny of all major groups of cetaceans based on DNA sequences from three mitochondrial genes.
Mol Biol Evol. 1994 Nov;11(6):939-48. doi: 10.1093/oxfordjournals.molbev.a040164.
5
Evolution of Digestive Enzymes and RNASE1 Provides Insights into Dietary Switch of Cetaceans.
Mol Biol Evol. 2016 Dec;33(12):3144-3157. doi: 10.1093/molbev/msw191. Epub 2016 Sep 20.
6
Into the Blue: Exploring genetic mechanisms behind the evolution of baleen whales.
Gene. 2024 Dec 15;929:148822. doi: 10.1016/j.gene.2024.148822. Epub 2024 Aug 3.
9
Breathing Air and Living Underwater: Molecular Evolution of Genes Related to Antioxidant Response in Cetaceans and Pinnipeds.
J Mol Evol. 2024 Jun;92(3):300-316. doi: 10.1007/s00239-024-10170-3. Epub 2024 May 12.

引用本文的文献

1
DNA repair and anti-cancer mechanisms in the long-lived bowhead whale.
bioRxiv. 2024 Nov 5:2023.05.07.539748. doi: 10.1101/2023.05.07.539748.
2
Thermal stress, p53 structures and learning from elephants.
Cell Death Discov. 2024 Aug 7;10(1):353. doi: 10.1038/s41420-024-02109-w.
3
Evolution of ion channels in cetaceans: a natural experiment in the tree of life.
Sci Rep. 2024 Jul 23;14(1):17024. doi: 10.1038/s41598-024-66082-1.
4
Evolution of diapause in the African turquoise killifish by remodeling the ancient gene regulatory landscape.
Cell. 2024 Jun 20;187(13):3338-3356.e30. doi: 10.1016/j.cell.2024.04.048. Epub 2024 May 28.
5
Arginines of the CGN codon family are Achilles' heels of cancer genes.
Sci Rep. 2024 May 22;14(1):11715. doi: 10.1038/s41598-024-62553-7.
6
Pathogenic variants in human DNA damage repair genes mostly arose in recent human history.
BMC Cancer. 2024 Apr 4;24(1):415. doi: 10.1186/s12885-024-12160-6.
7
A High-Quality Blue Whale Genome, Segmental Duplications, and Historical Demography.
Mol Biol Evol. 2024 Mar 1;41(3). doi: 10.1093/molbev/msae036.
8
Duplications of Human Longevity-Associated Genes Across Placental Mammals.
Genome Biol Evol. 2023 Oct 6;15(10). doi: 10.1093/gbe/evad186.
9
Using epigenetic clocks to investigate changes in the age structure of critically endangered Māui dolphins.
Ecol Evol. 2023 Sep 28;13(10):e10562. doi: 10.1002/ece3.10562. eCollection 2023 Oct.
10
Long-Read Sequencing Reveals Rapid Evolution of Immunity- and Cancer-Related Genes in Bats.
Genome Biol Evol. 2023 Sep 4;15(9). doi: 10.1093/gbe/evad148.

本文引用的文献

1
Comparative Oncology: New Insights into an Ancient Disease.
iScience. 2020 Aug 21;23(8):101373. doi: 10.1016/j.isci.2020.101373. Epub 2020 Jul 16.
2
Mutations in genes encoding desmosomal proteins: spectrum of cutaneous and extracutaneous abnormalities.
Br J Dermatol. 2021 Apr;184(4):596-605. doi: 10.1111/bjd.19342. Epub 2020 Aug 2.
3
A multidimensional systems biology analysis of cellular senescence in aging and disease.
Genome Biol. 2020 Apr 7;21(1):91. doi: 10.1186/s13059-020-01990-9.
4
Genes lost during the transition from land to water in cetaceans highlight genomic changes associated with aquatic adaptations.
Sci Adv. 2019 Sep 25;5(9):eaaw6671. doi: 10.1126/sciadv.aaw6671. eCollection 2019 Sep.
6
Insights into body size variation in cetaceans from the evolution of body-size-related genes.
BMC Evol Biol. 2019 Jul 27;19(1):157. doi: 10.1186/s12862-019-1461-9.
7
OMA standalone: orthology inference among public and custom genomes and transcriptomes.
Genome Res. 2019 Jul;29(7):1152-1163. doi: 10.1101/gr.243212.118. Epub 2019 Jun 24.
8
WebGestalt 2019: gene set analysis toolkit with revamped UIs and APIs.
Nucleic Acids Res. 2019 Jul 2;47(W1):W199-W205. doi: 10.1093/nar/gkz401.
10
Acute salt loading induces sympathetic nervous system overdrive in mice lacking salt-inducible kinase 1 (SIK1).
Hypertens Res. 2019 Aug;42(8):1114-1124. doi: 10.1038/s41440-019-0249-z. Epub 2019 Mar 20.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验