Suppr超能文献

通过对大型药物重定位化合物库进行高通量筛选获得的 SARS-CoV-2 细胞病变数据集。

A SARS-CoV-2 cytopathicity dataset generated by high-content screening of a large drug repurposing collection.

机构信息

Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Hamburg, 22525, Germany.

University Hospital Frankfurt, 60590, Frankfurt am Main, Germany.

出版信息

Sci Data. 2021 Feb 26;8(1):70. doi: 10.1038/s41597-021-00848-4.

Abstract

SARS-CoV-2 is a novel coronavirus responsible for the COVID-19 pandemic, in which acute respiratory infections are associated with high socio-economic burden. We applied high-content screening to a well-defined collection of 5632 compounds including 3488 that have undergone previous clinical investigations across 600 indications. The compounds were screened by microscopy for their ability to inhibit SARS-CoV-2 cytopathicity in the human epithelial colorectal adenocarcinoma cell line, Caco-2. The primary screen identified 258 hits that inhibited cytopathicity by more than 75%, most of which were not previously known to be active against SARS-CoV-2 in vitro. These compounds were tested in an eight-point dose response screen using the same image-based cytopathicity readout. For the 67 most active molecules, cytotoxicity data were generated to confirm activity against SARS-CoV-2. We verified the ability of known inhibitors camostat, nafamostat, lopinavir, mefloquine, papaverine and cetylpyridinium to reduce the cytopathic effects of SARS-CoV-2, providing confidence in the validity of the assay. The high-content screening data are suitable for reanalysis across numerous drug classes and indications and may yield additional insights into SARS-CoV-2 mechanisms and potential therapeutic strategies.

摘要

新型冠状病毒(SARS-CoV-2)是引发 COVID-19 大流行的一种新型冠状病毒,急性呼吸道感染与高社会经济负担相关。我们对包括 3488 种已进行过先前临床研究的 5632 种化合物进行了高内涵筛选,这些化合物涉及 600 种适应症。我们通过显微镜筛选这些化合物,以检测它们抑制人类肠上皮细胞系(Caco-2)中 SARS-CoV-2 细胞病变的能力。初步筛选发现了 258 个抑制细胞病变超过 75%的化合物,其中大多数以前在体外对 SARS-CoV-2 没有活性。我们使用相同的基于图像的细胞病变检测方法,对这 67 种最有效的化合物进行了八点剂量反应筛选。对于 67 种最有效的分子,我们生成了细胞毒性数据,以确认其对 SARS-CoV-2 的活性。我们验证了已知抑制剂 camostat、nafamostat、lopinavir、mefloquine、papaverine 和 cetylpyridinium 减少 SARS-CoV-2 细胞病变效应的能力,从而对该检测方法的有效性提供了信心。高内涵筛选数据适合对众多药物类别和适应症进行重新分析,并且可能为 SARS-CoV-2 机制和潜在治疗策略提供更多的见解。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0221/7910569/0ca4909c8959/41597_2021_848_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验