Suppr超能文献

使用经过最少训练的域对抗神经网络从可穿戴传感器数据中开发个性化血压估计模型。

Developing Personalized Models of Blood Pressure Estimation from Wearable Sensors Data Using Minimally-trained Domain Adversarial Neural Networks.

作者信息

Zhang Lida, Hurley Nathan C, Ibrahim Bassem, Spatz Erica, Krumholz Harlan M, Jafari Roozbeh, Mortazavi Bobak J

机构信息

Department of Computer Science and Engineering, Texas A&M University, USA.

Department of Electrical and Computer Engineering, Texas A&M University, USA.

出版信息

Proc Mach Learn Res. 2020 Aug;126:97-120.

Abstract

Blood pressure monitoring is an essential component of hypertension management and in the prediction of associated comorbidities. Blood pressure is a dynamic vital sign with frequent changes throughout a given day. Capturing blood pressure remotely and frequently (also known as ambulatory blood pressure monitoring) has traditionally been achieved by measuring blood pressure at discrete intervals using an inflatable cuff. However, there is growing interest in developing a cuffless ambulatory blood pressure monitoring system to measure blood pressure continuously. One such approach is by utilizing bioimpedance sensors to build regression models. A practical problem with this approach is that the amount of data required to confidently train such a regression model can be prohibitive. In this paper, we propose the application of the domain-adversarial training neural network (DANN) method on our multitask learning (MTL) blood pressure estimation model, allowing for knowledge transfer between subjects. Our proposed model obtains average root mean square error (RMSE) of 4.80 ± 0.74 mmHg for diastolic blood pressure and 7.34 ± 1.88 mmHg for systolic blood pressure when using three minutes of training data, 4.64 ± 0.60 mmHg and 7.10 ± 1.79 respectively when using four minutes of training data, and 4.48±0.57 mmHg and 6.79±1.70 respectively when using five minutes of training data. DANN improves training with minimal data in comparison to both directly training and to training with a pretrained model from another subject, decreasing RMSE by 0.19 to 0.26 mmHg (diastolic) and by 0.46 to 0.67 mmHg (systolic) in comparison to the best baseline models. We observe that four minutes of training data is the minimum requirement for our framework to exceed ISO standards within this cohort of patients.

摘要

血压监测是高血压管理及相关合并症预测的重要组成部分。血压是一种动态生命体征,在一天中会频繁变化。传统上,远程且频繁地测量血压(也称为动态血压监测)是通过使用充气袖带在离散时间间隔测量血压来实现的。然而,开发一种无袖带动态血压监测系统以持续测量血压的兴趣日益浓厚。一种方法是利用生物阻抗传感器构建回归模型。这种方法的一个实际问题是,可靠地训练这样一个回归模型所需的数据量可能过高。在本文中,我们提出将域对抗训练神经网络(DANN)方法应用于我们的多任务学习(MTL)血压估计模型,以实现受试者之间的知识转移。我们提出的模型在使用三分钟训练数据时,舒张压的平均均方根误差(RMSE)为4.80±0.74 mmHg,收缩压为7.34±1.88 mmHg;使用四分钟训练数据时,分别为4.64±0.60 mmHg和7.10±1.79 mmHg;使用五分钟训练数据时,分别为4.48±0.57 mmHg和6.79±1.70 mmHg。与直接训练以及使用来自另一个受试者的预训练模型进行训练相比,DANN使用最少的数据进行训练,与最佳基线模型相比,舒张压的RMSE降低了0.19至0.26 mmHg,收缩压降低了0.46至0.67 mmHg。我们观察到,对于我们的框架而言,四分钟的训练数据是在该患者队列中超过ISO标准的最低要求。

相似文献

4
Blood Pressure Estimation Using Photoplethysmography Only: Comparison between Different Machine Learning Approaches.
J Healthc Eng. 2018 Oct 23;2018:1548647. doi: 10.1155/2018/1548647. eCollection 2018.
5
Continuous cuffless blood pressure monitoring with a wearable ring bioimpedance device.
NPJ Digit Med. 2023 Mar 30;6(1):59. doi: 10.1038/s41746-023-00796-w.
7
Unobtrusive Blood Pressure Estimation using Personalized Autoregressive Models.
Annu Int Conf IEEE Eng Med Biol Soc. 2020 Jul;2020:5992-5995. doi: 10.1109/EMBC44109.2020.9175635.
8
Cuffless Blood Pressure Estimation for Activities of Daily Living.
Annu Int Conf IEEE Eng Med Biol Soc. 2020 Jul;2020:4441-4445. doi: 10.1109/EMBC44109.2020.9175976.
9
Cuffless Blood Pressure Estimation Using Pressure Pulse Wave Signals.
Sensors (Basel). 2018 Dec 2;18(12):4227. doi: 10.3390/s18124227.
10
Continuous systolic and diastolic blood pressure estimation utilizing long short-term memory network.
Annu Int Conf IEEE Eng Med Biol Soc. 2017 Jul;2017:1853-1856. doi: 10.1109/EMBC.2017.8037207.

引用本文的文献

5
A Deep Learning Framework for Deriving Noninvasive Intracranial Pressure Waveforms from Transcranial Doppler.
Ann Neurol. 2023 Jul;94(1):196-202. doi: 10.1002/ana.26682. Epub 2023 Jun 1.
6
Survey and Evaluation of Hypertension Machine Learning Research.
J Am Heart Assoc. 2023 May 2;12(9):e027896. doi: 10.1161/JAHA.122.027896. Epub 2023 Apr 29.

本文引用的文献

1
Cuffless Blood Pressure Monitoring from an Array of Wrist Bio-Impedance Sensors Using Subject-Specific Regression Models: Proof of Concept.
IEEE Trans Biomed Circuits Syst. 2019 Dec;13(6):1723-1735. doi: 10.1109/TBCAS.2019.2946661. Epub 2019 Oct 10.
2
A Wrist-Worn Strap with an Array of Electrodes for Robust Physiological Sensing.
Annu Int Conf IEEE Eng Med Biol Soc. 2018 Jul;2018:4313-4317. doi: 10.1109/EMBC.2018.8513238.
3
Blood Pressure Measurement and Hypertension Diagnosis in the 2017 US Guidelines: First Things First.
Hypertension. 2018 Jun;71(6):963-965. doi: 10.1161/HYPERTENSIONAHA.118.10853. Epub 2018 Apr 23.
4
Relationship between Clinic and Ambulatory Blood-Pressure Measurements and Mortality.
N Engl J Med. 2018 Apr 19;378(16):1509-1520. doi: 10.1056/NEJMoa1712231.
9
Cuffless Blood Pressure Estimation Algorithms for Continuous Health-Care Monitoring.
IEEE Trans Biomed Eng. 2017 Apr;64(4):859-869. doi: 10.1109/TBME.2016.2580904. Epub 2016 Jun 14.
10
BioWatch: A Noninvasive Wrist-Based Blood Pressure Monitor That Incorporates Training Techniques for Posture and Subject Variability.
IEEE J Biomed Health Inform. 2016 Sep;20(5):1291-300. doi: 10.1109/JBHI.2015.2458779. Epub 2015 Jul 20.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验