Suppr超能文献

MSLDOCK:用于柔性配体对接和虚拟筛选的多群优化。

MSLDOCK: Multi-Swarm Optimization for Flexible Ligand Docking and Virtual Screening.

机构信息

Department of Computer Science and Technology, Jiangnan University, No.1800, Lihu Avenue, Wuxi, Jiangsu 214122, PR China.

Faculty of Engineering and Computing, Coventry University, Priory Street, Coventry CV1 5FB, U.K.

出版信息

J Chem Inf Model. 2021 Mar 22;61(3):1500-1515. doi: 10.1021/acs.jcim.0c01358. Epub 2021 Mar 3.

Abstract

Autodock and its various variants are widely utilized docking approaches, which adopt optimization methods as search algorithms for flexible ligand docking and virtual screening. However, many of them have their limitations, such as poor accuracy for dockings with highly flexible ligands and low docking efficiency. In this paper, a multi-swarm optimization algorithm integrated with Autodock environment is proposed to design a high-performance and high-efficiency docking program, namely, MSLDOCK. The search algorithm is a combination of the random drift particle swarm optimization with a novel multi-swarm strategy and the Solis and Wets local search method with a modified implementation. Due to the algorithm's structure, MSLDOCK also has a multithread mode. The experimental results reveal that MSLDOCK outperforms other two Autodock-based approaches in many aspects, such as self-docking, cross-docking, and virtual screening accuracies as well as docking efficiency. Moreover, compared with three non-Autodock-based docking programs, MSLDOCK can be a reliable choice for self-docking and virtual screening, especially for dealing with highly flexible ligand docking problems. The source code of MSLDOCK can be downloaded for free from https://github.com/lcmeteor/MSLDOCK.

摘要

自动对接及其各种变体是广泛使用的对接方法,它们采用优化方法作为搜索算法,用于柔性配体对接和虚拟筛选。然而,它们中的许多方法都存在局限性,例如对于高度灵活的配体对接的准确性较差和对接效率低。在本文中,提出了一种集成 Autodock 环境的多群优化算法,用于设计高性能和高效率的对接程序,即 MSLDOCK。搜索算法是随机漂移粒子群优化与新型多群策略的组合,以及 Solis 和 Wets 局部搜索方法与改进实现的组合。由于算法的结构,MSLDOCK 还具有多线程模式。实验结果表明,MSLDOCK 在许多方面都优于其他两种基于 Autodock 的方法,例如自对接、交叉对接和虚拟筛选的准确性以及对接效率。此外,与三种非 Autodock 对接程序相比,MSLDOCK 可以成为自对接和虚拟筛选的可靠选择,特别是在处理高度灵活的配体对接问题时。MSLDOCK 的源代码可以从 https://github.com/lcmeteor/MSLDOCK 免费下载。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验