Suppr超能文献

时钟细胞利用多种机制在大脑中传递时间信号。

clock cells use multiple mechanisms to transmit time-of-day signals in the brain.

机构信息

Waksman Institute, Department of Molecular Biology and Biochemistry, Rutgers, The State University of New Jersey, Piscataway, NJ 08854.

Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104.

出版信息

Proc Natl Acad Sci U S A. 2021 Mar 9;118(10). doi: 10.1073/pnas.2019826118.

Abstract

Regulation of circadian behavior and physiology by the brain clock requires communication from central clock neurons to downstream output regions, but the mechanism by which clock cells regulate downstream targets is not known. We show here that the pars intercerebralis (PI), previously identified as a target of the morning cells in the clock network, also receives input from evening cells. We determined that morning and evening clock neurons have time-of-day-dependent connectivity to the PI, which is regulated by specific peptides as well as by fast neurotransmitters. Interestingly, PI cells that secrete the peptide DH44, and control rest:activity rhythms, are inhibited by clock inputs while insulin-producing cells (IPCs) are activated, indicating that the same clock cells can use different mechanisms to drive cycling in output neurons. Inputs of morning cells to IPCs are relevant for the circadian rhythm of feeding, reinforcing the role of the PI as a circadian relay that controls multiple behavioral outputs. Our findings provide mechanisms by which clock neurons signal to nonclock cells to drive rhythms of behavior.

摘要

大脑时钟对昼夜节律行为和生理的调节需要中枢时钟神经元向下游输出区域传递信号,但时钟细胞调节下游靶标的机制尚不清楚。我们在这里表明,脑间部(PI)以前被确定为时钟网络中晨型细胞的靶标,也接收夜型细胞的输入。我们确定晨型和夜型时钟神经元与 PI 具有时间依赖性的连接,这种连接受到特定肽以及快速神经递质的调节。有趣的是,分泌肽 DH44 并控制休息-活动节律的 PI 细胞被时钟输入抑制,而胰岛素分泌细胞(IPCs)被激活,这表明相同的时钟细胞可以使用不同的机制来驱动输出神经元的循环。晨型细胞对 IPCs 的输入与摄食的昼夜节律有关,这进一步证实了 PI 作为一个控制多种行为输出的生物钟中继的作用。我们的发现为时钟神经元向非时钟细胞发出信号以驱动行为节律提供了机制。

相似文献

1
clock cells use multiple mechanisms to transmit time-of-day signals in the brain.
Proc Natl Acad Sci U S A. 2021 Mar 9;118(10). doi: 10.1073/pnas.2019826118.
2
Slowpoke functions in circadian output cells to regulate rest:activity rhythms.
PLoS One. 2021 Mar 25;16(3):e0249215. doi: 10.1371/journal.pone.0249215. eCollection 2021.
3
A circadian output center controlling feeding:fasting rhythms in Drosophila.
PLoS Genet. 2019 Nov 6;15(11):e1008478. doi: 10.1371/journal.pgen.1008478. eCollection 2019 Nov.
4
Circadian and feeding cues integrate to drive rhythms of physiology in Drosophila insulin-producing cells.
Genes Dev. 2016 Dec 1;30(23):2596-2606. doi: 10.1101/gad.288258.116. Epub 2016 Dec 15.
5
Overlapping Central Clock Network Circuitry Regulates Circadian Feeding and Activity Rhythms in Drosophila.
J Biol Rhythms. 2024 Oct;39(5):440-462. doi: 10.1177/07487304241263734. Epub 2024 Jul 26.
6
Identification of a circadian output circuit for rest:activity rhythms in Drosophila.
Cell. 2014 Apr 24;157(3):689-701. doi: 10.1016/j.cell.2014.02.024.
8
Molecular and circuit mechanisms mediating circadian clock output in the Drosophila brain.
Eur J Neurosci. 2020 Jan;51(1):268-281. doi: 10.1111/ejn.14092. Epub 2018 Aug 16.
9
Neuropeptide-dependent spike time precision and plasticity in circadian output neurons.
bioRxiv. 2024 Dec 21:2024.10.06.616871. doi: 10.1101/2024.10.06.616871.
10
Drosophila free-running rhythms require intercellular communication.
PLoS Biol. 2003 Oct;1(1):E13. doi: 10.1371/journal.pbio.0000013. Epub 2003 Sep 15.

引用本文的文献

2
Neuropeptide-Dependent Spike Time Precision and Plasticity in Circadian Output Neurons.
Eur J Neurosci. 2025 Mar;61(5):e70037. doi: 10.1111/ejn.70037.
3
Aminergic and peptidergic modulation of insulin-producing cells in .
Elife. 2025 Mar 10;13:RP99548. doi: 10.7554/eLife.99548.
4
Mutual coupling of neurons in the circadian master clock: What we can learn from fruit flies.
Neurobiol Sleep Circadian Rhythms. 2025 Jan 17;18:100112. doi: 10.1016/j.nbscr.2025.100112. eCollection 2025 May.
5
Nutritional state-dependent modulation of insulin-producing cells in .
Elife. 2025 Jan 29;13:RP98514. doi: 10.7554/eLife.98514.
6
A brief history of insect neuropeptide and peptide hormone research.
Cell Tissue Res. 2025 Feb;399(2):129-159. doi: 10.1007/s00441-024-03936-0. Epub 2024 Dec 10.
7
Synaptic connectome of the Drosophila circadian clock.
Nat Commun. 2024 Dec 5;15(1):10392. doi: 10.1038/s41467-024-54694-0.
8
Temperature cues are integrated in a flexible circadian neuropeptidergic feedback circuit to remodel sleep-wake patterns in flies.
PLoS Biol. 2024 Dec 2;22(12):e3002918. doi: 10.1371/journal.pbio.3002918. eCollection 2024 Dec.
9
Taste triggers a homeostatic temperature control in hungry flies.
Elife. 2024 Dec 2;13:RP94703. doi: 10.7554/eLife.94703.
10
The Never Given 2022 Pittendrigh/Aschoff Lecture: The Clock Network in the Brain-Insights From Insects.
J Biol Rhythms. 2025 Apr;40(2):120-142. doi: 10.1177/07487304241290861. Epub 2024 Nov 11.

本文引用的文献

1
A circadian output center controlling feeding:fasting rhythms in Drosophila.
PLoS Genet. 2019 Nov 6;15(11):e1008478. doi: 10.1371/journal.pgen.1008478. eCollection 2019 Nov.
4
Morning and Evening Circadian Pacemakers Independently Drive Premotor Centers via a Specific Dopamine Relay.
Neuron. 2019 May 22;102(4):843-857.e4. doi: 10.1016/j.neuron.2019.03.028. Epub 2019 Apr 10.
6
Clock-Generated Temporal Codes Determine Synaptic Plasticity to Control Sleep.
Cell. 2018 Nov 15;175(5):1213-1227.e18. doi: 10.1016/j.cell.2018.09.016. Epub 2018 Oct 11.
7
A post-ingestive amino acid sensor promotes food consumption in Drosophila.
Cell Res. 2018 Oct;28(10):1013-1025. doi: 10.1038/s41422-018-0084-9. Epub 2018 Sep 12.
8
A Conserved Circadian Function for the Neurofibromatosis 1 Gene.
Cell Rep. 2018 Mar 27;22(13):3416-3426. doi: 10.1016/j.celrep.2018.03.014.
9
10
Simultaneous measurement of sleep and feeding in individual Drosophila.
Nat Protoc. 2017 Nov;12(11):2355-2366. doi: 10.1038/nprot.2017.096. Epub 2017 Oct 12.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验