Suppr超能文献

免疫检查点抑制剂和细胞治疗在淋巴瘤免疫治疗中的应用。

Immune checkpoint inhibitors and cellular treatment for lymphoma immunotherapy.

机构信息

Department of Hematology, Lymphoma Research Center, Peking University Third Hospital, Beijing, China.

出版信息

Clin Exp Immunol. 2021 Jul;205(1):1-11. doi: 10.1111/cei.13592. Epub 2021 Mar 28.

Abstract

Malignant lymphoma (ML) is a common hematological malignancy with many subtypes. Patients with ML usually undergo traditional treatment failure and become relapsed or refractory (R/R) cases. Recently, immunotherapy, such as immune checkpoint inhibitors (ICIs) and cellular treatment, has gradually emerged and used in clinical trials with encouraging achievements for ML treatment, which exerts anti-tumor activity by blocking the immune evasion of tumor cells and enhancing the attack ability of immune cells. Targets of immune checkpoints include programmed cell death-1 (PD-1), programmed cell death-ligand 1 (PD-L1), cytotoxic T lymphocyte-associated protein 4 (CTLA-4), T cell immunoglobulin and ITIM domain (TIGIT), T cell immunoglobulin-3 (TIM-3) and lymphocyte activation gene 3 (LAG-3). Examples of cellular treatment are chimeric antigen receptor (CAR) T cells, cytokine-induced killer (CIK) cells and natural killer (NK) cells. This review aimed to present the current progress and future prospects of immunotherapy in lymphoma, with the focus upon ICIs and cellular treatment.

摘要

恶性淋巴瘤(ML)是一种常见的血液系统恶性肿瘤,有许多亚型。ML 患者通常经历传统治疗失败,成为复发或难治性(R/R)病例。近年来,免疫疗法,如免疫检查点抑制剂(ICIs)和细胞治疗,已逐渐在临床试验中崭露头角,并取得了令人鼓舞的成就,为 ML 治疗提供了新的选择。这些疗法通过阻断肿瘤细胞的免疫逃逸和增强免疫细胞的攻击能力发挥抗肿瘤作用。免疫检查点的靶点包括程序性细胞死亡蛋白-1(PD-1)、程序性细胞死亡配体 1(PD-L1)、细胞毒性 T 淋巴细胞相关蛋白 4(CTLA-4)、T 细胞免疫球蛋白和 ITIM 结构域(TIGIT)、T 细胞免疫球蛋白-3(TIM-3)和淋巴细胞激活基因 3(LAG-3)。细胞治疗的例子有嵌合抗原受体(CAR)T 细胞、细胞因子诱导的杀伤(CIK)细胞和自然杀伤(NK)细胞。本综述旨在介绍淋巴瘤免疫治疗的最新进展和未来前景,重点关注 ICIs 和细胞治疗。

相似文献

1
Immune checkpoint inhibitors and cellular treatment for lymphoma immunotherapy.
Clin Exp Immunol. 2021 Jul;205(1):1-11. doi: 10.1111/cei.13592. Epub 2021 Mar 28.
2
Novel immune checkpoint targets: moving beyond PD-1 and CTLA-4.
Mol Cancer. 2019 Nov 6;18(1):155. doi: 10.1186/s12943-019-1091-2.
3
Immune checkpoint inhibitors: breakthroughs in cancer treatment.
Cancer Biol Med. 2024 May 24;21(6):451-72. doi: 10.20892/j.issn.2095-3941.2024.0055.
4
Immune checkpoint inhibitors associated cardiovascular immune-related adverse events.
Front Immunol. 2024 Feb 5;15:1340373. doi: 10.3389/fimmu.2024.1340373. eCollection 2024.
5
Immune checkpoints and cancer development: Therapeutic implications and future directions.
Pathol Res Pract. 2021 Jul;223:153485. doi: 10.1016/j.prp.2021.153485. Epub 2021 May 15.
6
Targeting immune checkpoints in hematological malignancies.
J Hematol Oncol. 2020 Aug 12;13(1):111. doi: 10.1186/s13045-020-00947-6.
8
Immune-Checkpoint Blockade Therapy in Lymphoma.
Int J Mol Sci. 2020 Jul 30;21(15):5456. doi: 10.3390/ijms21155456.
9
Strategies to Improve the Antitumor Effect of Immunotherapy for Hepatocellular Carcinoma.
Front Immunol. 2021 Nov 26;12:783236. doi: 10.3389/fimmu.2021.783236. eCollection 2021.
10
The importance of immune checkpoints in immune monitoring: A future paradigm shift in the treatment of cancer.
Biomed Pharmacother. 2022 Feb;146:112516. doi: 10.1016/j.biopha.2021.112516. Epub 2021 Dec 11.

引用本文的文献

1
Rendering NK Cells Antigen-Specific for the Therapy of Solid Tumours.
Int J Mol Sci. 2025 Jun 29;26(13):6290. doi: 10.3390/ijms26136290.
4
Unlocking the Therapeutic Potential of Algae-Derived Compounds in Hematological Malignancies.
Cancers (Basel). 2025 Jan 20;17(2):318. doi: 10.3390/cancers17020318.
7
CAR-NK cells in combination therapy against cancer: A potential paradigm.
Heliyon. 2024 Feb 29;10(5):e27196. doi: 10.1016/j.heliyon.2024.e27196. eCollection 2024 Mar 15.
8
Brief research report: in-depth immunophenotyping reveals stability of CD19 CAR T-cells over time.
Front Immunol. 2024 Jan 22;15:1298598. doi: 10.3389/fimmu.2024.1298598. eCollection 2024.
9
Advances in single-cell RNA sequencing and its applications in cancer research.
J Hematol Oncol. 2023 Aug 24;16(1):98. doi: 10.1186/s13045-023-01494-6.

本文引用的文献

1
Use of CAR-Transduced Natural Killer Cells in CD19-Positive Lymphoid Tumors.
N Engl J Med. 2020 Feb 6;382(6):545-553. doi: 10.1056/NEJMoa1910607.
5
Expression of the checkpoint receptors LAG-3, TIM-3 and VISTA in peripheral T cell lymphomas.
J Clin Pathol. 2020 Apr;73(4):197-203. doi: 10.1136/jclinpath-2019-206117. Epub 2019 Oct 31.
7
A Phase I Study of the Combination of Rituximab and Ipilimumab in Patients with Relapsed/Refractory B-Cell Lymphoma.
Clin Cancer Res. 2019 Dec 1;25(23):7004-7013. doi: 10.1158/1078-0432.CCR-19-0438. Epub 2019 Sep 3.
8
Cellular therapy for acute myeloid Leukemia - Current status and future prospects.
Blood Rev. 2019 Sep;37:100578. doi: 10.1016/j.blre.2019.05.002. Epub 2019 May 11.
10
The immune checkpoint molecules PD-1, PD-L1, TIM-3 and LAG-3 in diffuse large B-cell lymphoma.
Oncotarget. 2019 Mar 12;10(21):2030-2040. doi: 10.18632/oncotarget.26771.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验