Department of Neurology, University of Pittsburgh, Pittsburgh, Pennsylvania 15260.
Pittsburgh Institute for Neurodegenerative Diseases, University of Pittsburgh, Pittsburgh, Pennsylvania 15213.
J Neurosci. 2021 May 5;41(18):4141-4157. doi: 10.1523/JNEUROSCI.2124-20.2021. Epub 2021 Mar 17.
Zebrafish models are used increasingly to study the molecular pathogenesis of Parkinson's disease (PD), owing to the extensive array of techniques available for their experimental manipulation and analysis. The ascending dopaminergic projection from the posterior tuberculum (TPp; diencephalic populations DC2 and DC4) to the subpallium is considered the zebrafish correlate of the mammalian nigrostriatal projection, but little is known about the neurophysiology of zebrafish DC2/4 neurons. This is an important knowledge gap, because autonomous activity in mammalian substantia nigra (SNc) dopaminergic neurons contributes to their vulnerability in PD models. Using a new transgenic zebrafish line to label living dopaminergic neurons, and a novel brain slice preparation, we conducted whole-cell patch clamp recordings of DC2/4 neurons from adult zebrafish of both sexes. Zebrafish DC2/4 neurons share many physiological properties with mammalian dopaminergic neurons, including the cell-autonomous generation of action potentials. However, in contrast to mammalian dopaminergic neurons, the pacemaker driving intrinsic rhythmic activity in zebrafish DC2/4 neurons does not involve calcium conductances, hyperpolarization-activated cyclic nucleotide-gated (HCN) channels, or sodium leak currents. Instead, voltage clamp recordings and computational models show that interactions between three components - a small, predominantly potassium, leak conductance, voltage-gated sodium channels, and voltage-gated potassium channels - are sufficient for pacemaker activity in zebrafish DC2/4 neurons. These results contribute to understanding the comparative physiology of the dopaminergic system and provide a conceptual basis for interpreting data derived from zebrafish PD models. The findings further suggest new experimental opportunities to address the role of dopaminergic pacemaker activity in the pathogenesis of PD. Posterior tuberculum (TPp) DC2/4 dopaminergic neurons are considered the zebrafish correlate of mammalian substantia nigra (SNc) neurons, whose degeneration causes the motor signs of Parkinson's disease (PD). Our study shows that DC2/4 and SNc neurons share a number of electrophysiological properties, including depolarized membrane potential, high input resistance, and continual, cell-autonomous pacemaker activity, that strengthen the basis for the increasing use of zebrafish models to study the molecular pathogenesis of PD. The mechanisms driving pacemaker activity differ between DC2/4 and SNc neurons, providing: (1) experimental opportunities to dissociate the contributions of intrinsic activity and underlying pacemaker currents to pathogenesis; and (2) essential information for the design and interpretation of studies using zebrafish PD models.
斑马鱼模型越来越多地被用于研究帕金森病 (PD) 的分子发病机制,这要归功于可用于对其进行实验操作和分析的广泛技术。来自后丘(TPp;脑区 DC2 和 DC4)的上升多巴胺能投射到脑底被认为是斑马鱼与哺乳动物黑质纹状体投射相关的部位,但关于斑马鱼 DC2/4 神经元的神经生理学知之甚少。这是一个重要的知识空白,因为哺乳动物黑质 (SNc) 多巴胺能神经元的自主活动有助于它们在 PD 模型中的易损性。使用一种新的转基因斑马鱼品系来标记活的多巴胺能神经元,并采用一种新的脑片制备方法,我们对来自成年雌雄斑马鱼的 DC2/4 神经元进行了全细胞膜片钳记录。斑马鱼 DC2/4 神经元与哺乳动物多巴胺能神经元具有许多生理特性,包括自主产生动作电位。然而,与哺乳动物多巴胺能神经元不同的是,驱动斑马鱼 DC2/4 神经元内在节律性活动的起搏器不涉及钙电导、超极化激活环核苷酸门控 (HCN) 通道或钠漏电流。相反,电压钳记录和计算模型表明,三个组件之间的相互作用 - 一个小的、主要是钾的、漏导、电压门控钠通道和电压门控钾通道 - 足以产生斑马鱼 DC2/4 神经元的起搏器活动。这些结果有助于了解多巴胺能系统的比较生理学,并为解释来自斑马鱼 PD 模型的数据提供了概念基础。研究结果进一步表明了新的实验机会,可以解决多巴胺能起搏器活动在 PD 发病机制中的作用。后丘 (TPp) DC2/4 多巴胺能神经元被认为是与哺乳动物黑质 (SNc) 神经元相关的斑马鱼,其退化导致帕金森病 (PD) 的运动体征。我们的研究表明,DC2/4 和 SNc 神经元具有许多电生理特性,包括去极化的膜电位、高输入电阻和持续的、自主的起搏器活动,这为越来越多地使用斑马鱼模型来研究 PD 的分子发病机制提供了依据。驱动起搏器活动的机制在 DC2/4 和 SNc 神经元之间存在差异,为:(1)分离内在活动和潜在起搏器电流对发病机制的贡献提供了实验机会;(2)为使用斑马鱼 PD 模型的研究提供了必要的信息。