Suppr超能文献

HPK1强效反向吲唑抑制剂的鉴定

Identification of Potent Reverse Indazole Inhibitors for HPK1.

作者信息

Yu Elsie C, Methot Joey L, Fradera Xavier, Lesburg Charles A, Lacey Brian M, Siliphaivanh Phieng, Liu Ping, Smith Dustin M, Xu Zangwei, Piesvaux Jennifer A, Kawamura Shuhei, Xu Haiyan, Miller J Richard, Bittinger Mark, Pasternak Alexander

机构信息

Discovery Chemistry, Merck & Co., Inc., Boston, Massachusetts, 02115, United States.

Computational and Structural Chemistry, Merck & Co., Inc., Boston, Massachusetts, 02115, United States.

出版信息

ACS Med Chem Lett. 2021 Mar 1;12(3):459-466. doi: 10.1021/acsmedchemlett.0c00672. eCollection 2021 Mar 11.

Abstract

Hematopoietic progenitor kinase (HPK1), a negative regulator of TCR-mediated T-cell activation, has been recognized as a novel antitumor immunotherapy target. Structural optimization of kinase inhibitor through a systematic two-dimensional diversity screen of pyrazolopyridines led to the identification of potent and selective compounds. Crystallographic studies with HPK1 revealed a favorable water-mediated interaction with Asp155 and a salt bridge to Asp101 with optimized heterocyclic solvent fronts that were critical for enhanced potency and selectivity. Computational studies of model systems revealed differences in torsional profiles that allowed for these beneficial protein-ligand interactions. Further optimization of molecular properties led to identification of potent and selective reverse indazole inhibitor that inhibited phosphorylation of adaptor protein SLP76 in human PBMC and exhibited low clearance with notable bioavailability in rat studies.

摘要

造血祖细胞激酶(HPK1)是TCR介导的T细胞活化的负调节因子,已被确认为一种新型的抗肿瘤免疫治疗靶点。通过对吡唑并吡啶进行系统的二维多样性筛选对激酶抑制剂进行结构优化,从而鉴定出强效且选择性的化合物。对HPK1进行的晶体学研究表明,其与Asp155形成了有利的水介导相互作用,并与Asp101形成了盐桥,同时优化的杂环溶剂前沿对增强效力和选择性至关重要。对模型系统的计算研究揭示了扭转轮廓的差异,这些差异促成了这些有益的蛋白质-配体相互作用。对分子性质的进一步优化导致鉴定出强效且选择性的反向吲唑抑制剂,该抑制剂可抑制人外周血单个核细胞中衔接蛋白SLP76的磷酸化,并且在大鼠研究中显示出低清除率和显著的生物利用度。

相似文献

1
Identification of Potent Reverse Indazole Inhibitors for HPK1.
ACS Med Chem Lett. 2021 Mar 1;12(3):459-466. doi: 10.1021/acsmedchemlett.0c00672. eCollection 2021 Mar 11.
3
Discovery of 7H-Pyrrolo[2,3-d]pyrimidine Derivatives as potent hematopoietic progenitor kinase 1 (HPK1) inhibitors.
Eur J Med Chem. 2023 Jun 5;254:115355. doi: 10.1016/j.ejmech.2023.115355. Epub 2023 Apr 10.
4
Design and synthesis of 1H-pyrazolo[3,4-d]pyrimidine derivatives as hematopoietic progenitor kinase 1 (HPK1) inhibitors.
Bioorg Chem. 2023 Nov;140:106811. doi: 10.1016/j.bioorg.2023.106811. Epub 2023 Aug 26.
5
Discovery of diaminotriazine carboxamides as potent inhibitors of hematopoetic progenitor kinase 1.
Bioorg Chem. 2023 Sep;138:106682. doi: 10.1016/j.bioorg.2023.106682. Epub 2023 Jun 16.
6
Discovery of Diaminopyrimidine Carboxamide HPK1 Inhibitors as Preclinical Immunotherapy Tool Compounds.
ACS Med Chem Lett. 2021 Mar 19;12(4):653-661. doi: 10.1021/acsmedchemlett.1c00096. eCollection 2021 Apr 8.
7
Discovery of novel, potent, selective and orally bioavailable HPK1 inhibitor for enhancing the efficacy of anti-PD-L1 antibody.
Eur J Med Chem. 2024 Mar 5;267:116206. doi: 10.1016/j.ejmech.2024.116206. Epub 2024 Feb 8.
8
Design, synthesis, and biological evaluation of novel HPK1 inhibitors possessing 3-cyano-quinoline moiety.
Bioorg Chem. 2024 Dec;153:107814. doi: 10.1016/j.bioorg.2024.107814. Epub 2024 Sep 12.
9
Discovery of GNE-6893, a Potent, Selective, Orally Bioavailable Small Molecule Inhibitor of HPK1.
ACS Med Chem Lett. 2024 Sep 3;15(9):1606-1614. doi: 10.1021/acsmedchemlett.4c00319. eCollection 2024 Sep 12.
10
Enhanced antitumor immunity by a novel small molecule HPK1 inhibitor.
J Immunother Cancer. 2021 Jan;9(1). doi: 10.1136/jitc-2020-001402.

引用本文的文献

2
Exploiting Solvent Exposed Salt-Bridge Interactions for the Discovery of Potent Inhibitors of SOS1 Using Free-Energy Perturbation Simulations.
ACS Med Chem Lett. 2025 Feb 28;16(3):444-453. doi: 10.1021/acsmedchemlett.4c00602. eCollection 2025 Mar 13.
3
An updated review of small-molecule HPK1 kinase inhibitors (2016-present).
Future Med Chem. 2024;16(22):2431-2450. doi: 10.1080/17568919.2024.2420630. Epub 2024 Nov 25.
4
Design, Synthesis, and Biological Evaluation of a Series of Spiro Analogues as Novel HPK1 Inhibitors.
ACS Med Chem Lett. 2024 Oct 30;15(11):2032-2041. doi: 10.1021/acsmedchemlett.4c00434. eCollection 2024 Nov 14.
5
Discovery of GNE-6893, a Potent, Selective, Orally Bioavailable Small Molecule Inhibitor of HPK1.
ACS Med Chem Lett. 2024 Sep 3;15(9):1606-1614. doi: 10.1021/acsmedchemlett.4c00319. eCollection 2024 Sep 12.
6
Novel hematopoietic progenitor kinase 1 inhibitor KHK-6 enhances T-cell activation.
PLoS One. 2024 Jun 26;19(6):e0305261. doi: 10.1371/journal.pone.0305261. eCollection 2024.
7
Recent Advances in Pyrimidine-Based Drugs.
Pharmaceuticals (Basel). 2024 Jan 11;17(1):104. doi: 10.3390/ph17010104.
9
Potent and Selective Biaryl Amide Inhibitors of Hematopoietic Progenitor Kinase 1 (HPK1).
ACS Med Chem Lett. 2022 Dec 13;14(1):116-122. doi: 10.1021/acsmedchemlett.2c00241. eCollection 2023 Jan 12.
10
Discovery of Pyrazolopyridine Derivatives as HPK1 Inhibitors.
ACS Med Chem Lett. 2022 Dec 12;14(1):5-10. doi: 10.1021/acsmedchemlett.2c00238. eCollection 2023 Jan 12.

本文引用的文献

1
A perspective on HPK1 as a novel immuno-oncology drug target.
Elife. 2020 Sep 8;9:e55122. doi: 10.7554/eLife.55122.
2
Hematopoietic Progenitor Kinase1 (HPK1) Mediates T Cell Dysfunction and Is a Druggable Target for T Cell-Based Immunotherapies.
Cancer Cell. 2020 Oct 12;38(4):551-566.e11. doi: 10.1016/j.ccell.2020.08.001. Epub 2020 Aug 28.
3
Development of High-Throughput Assays for Evaluation of Hematopoietic Progenitor Kinase 1 Inhibitors.
SLAS Discov. 2021 Jan;26(1):88-99. doi: 10.1177/2472555220952071. Epub 2020 Aug 26.
5
A guide to cancer immunotherapy: from T cell basic science to clinical practice.
Nat Rev Immunol. 2020 Nov;20(11):651-668. doi: 10.1038/s41577-020-0306-5. Epub 2020 May 20.
6
Critical role of kinase activity of hematopoietic progenitor kinase 1 in anti-tumor immune surveillance.
PLoS One. 2019 Mar 26;14(3):e0212670. doi: 10.1371/journal.pone.0212670. eCollection 2019.
7
Evolution of Small Molecule Kinase Drugs.
ACS Med Chem Lett. 2018 Dec 18;10(2):153-160. doi: 10.1021/acsmedchemlett.8b00445. eCollection 2019 Feb 14.
8
Hematopoietic Progenitor Kinase-1 Structure in a Domain-Swapped Dimer.
Structure. 2019 Jan 2;27(1):125-133.e4. doi: 10.1016/j.str.2018.10.025. Epub 2018 Nov 29.
10
A genome-wide survey of mutations in the Jurkat cell line.
BMC Genomics. 2018 May 8;19(1):334. doi: 10.1186/s12864-018-4718-6.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验