Suppr超能文献

比例分析揭示了朊病毒在体内复制的机制和速度。

Scaling analysis reveals the mechanism and rates of prion replication in vivo.

机构信息

Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, UK.

Department of Pathology, UC San Diego, San Diego, CA, USA.

出版信息

Nat Struct Mol Biol. 2021 Apr;28(4):365-372. doi: 10.1038/s41594-021-00565-x. Epub 2021 Mar 25.

Abstract

Prions consist of pathological aggregates of cellular prion protein and have the ability to replicate, causing neurodegenerative diseases, a phenomenon mirrored in many other diseases connected to protein aggregation, including Alzheimer's and Parkinson's diseases. However, despite their key importance in disease, the individual processes governing this formation of pathogenic aggregates, as well as their rates, have remained challenging to elucidate in vivo. Here we bring together a mathematical framework with kinetics of the accumulation of prions in mice and microfluidic measurements of aggregate size to dissect the overall aggregation reaction into its constituent processes and quantify the reaction rates in mice. Taken together, the data show that multiplication of prions in vivo is slower than in in vitro experiments, but efficient when compared with other amyloid systems, and displays scaling behavior characteristic of aggregate fragmentation. These results provide a framework for the determination of the mechanisms of disease-associated aggregation processes within living organisms.

摘要

朊病毒由细胞朊病毒蛋白的病理性聚集物组成,具有复制能力,导致神经退行性疾病,这一现象在许多与蛋白质聚集相关的其他疾病中也有体现,包括阿尔茨海默病和帕金森病。然而,尽管它们在疾病中具有重要作用,但在体内阐明导致致病性聚集物形成的各个过程及其速率仍然具有挑战性。在这里,我们将朊病毒在小鼠体内积累的动力学数学框架与微流控测量的聚集物大小相结合,将整体聚集反应分解为其组成过程,并在小鼠体内定量反应速率。总的来说,这些数据表明,朊病毒在体内的繁殖速度比体外实验慢,但与其他淀粉样蛋白系统相比效率更高,并且表现出与聚集物断裂特征相符的缩放行为。这些结果为在活生物体中确定与疾病相关的聚集过程的机制提供了一个框架。

相似文献

1
Scaling analysis reveals the mechanism and rates of prion replication in vivo.
Nat Struct Mol Biol. 2021 Apr;28(4):365-372. doi: 10.1038/s41594-021-00565-x. Epub 2021 Mar 25.
4
The molecular processes underpinning prion-like spreading and seed amplification in protein aggregation.
Curr Opin Neurobiol. 2020 Apr;61:58-64. doi: 10.1016/j.conb.2020.01.010. Epub 2020 Feb 21.
5
Misfolded protein aggregates: mechanisms, structures and potential for disease transmission.
Semin Cell Dev Biol. 2011 Jul;22(5):482-7. doi: 10.1016/j.semcdb.2011.04.002. Epub 2011 May 5.
6
Insights into Mechanisms of Chronic Neurodegeneration.
Int J Mol Sci. 2016 Jan 12;17(1):82. doi: 10.3390/ijms17010082.
7
Application of yeast to studying amyloid and prion diseases.
Adv Genet. 2020;105:293-380. doi: 10.1016/bs.adgen.2020.01.002. Epub 2020 May 4.
8
Intercellular Spread of Protein Aggregates in Neurodegenerative Disease.
Annu Rev Cell Dev Biol. 2018 Oct 6;34:545-568. doi: 10.1146/annurev-cellbio-100617-062636. Epub 2018 Jul 25.
9
Phage M13 for the treatment of Alzheimer and Parkinson disease.
Gene. 2016 Jun 1;583(2):85-89. doi: 10.1016/j.gene.2016.02.005. Epub 2016 Feb 8.
10
Prion-like transmission of pathogenic protein aggregates in genetic models of neurodegenerative disease.
Curr Opin Genet Dev. 2017 Jun;44:149-155. doi: 10.1016/j.gde.2017.03.011. Epub 2017 Apr 22.

引用本文的文献

1
Lysosomal Enhancement Prevents Infection with PrP, α-Synuclein & Tau Prions.
bioRxiv. 2025 Jun 25:2025.06.24.661349. doi: 10.1101/2025.06.24.661349.
2
Evidence against efficient spontaneous disassembly of prions into small oligomers.
J Biol Chem. 2025 Jun 21;301(8):110411. doi: 10.1016/j.jbc.2025.110411.
4
Prion replication in organotypic brain slice cultures is distinct from in vivo inoculation and is species dependent.
Acta Neuropathol Commun. 2025 Apr 30;13(1):86. doi: 10.1186/s40478-025-01999-w.
7
Prions: structure, function, evolution, and disease.
Arch Microbiol. 2024 Nov 22;207(1):1. doi: 10.1007/s00203-024-04200-3.
8
Kinetic models reveal the interplay of protein production and aggregation.
Chem Sci. 2024 May 10;15(22):8430-8442. doi: 10.1039/d4sc00088a. eCollection 2024 Jun 5.
9
Aβ Oligomer Dissociation Is Catalyzed by Fibril Surfaces.
ACS Chem Neurosci. 2024 Jun 5;15(11):2296-2307. doi: 10.1021/acschemneuro.4c00127. Epub 2024 May 24.
10
The thermodynamics of neurodegenerative disease.
Biophys Rev (Melville). 2024 Mar 20;5(1):011303. doi: 10.1063/5.0180899. eCollection 2024 Mar.

本文引用的文献

1
Ultrastructural evidence for self-replication of Alzheimer-associated Aβ42 amyloid along the sides of fibrils.
Proc Natl Acad Sci U S A. 2020 May 26;117(21):11265-11273. doi: 10.1073/pnas.1918481117. Epub 2020 May 21.
2
The molecular processes underpinning prion-like spreading and seed amplification in protein aggregation.
Curr Opin Neurobiol. 2020 Apr;61:58-64. doi: 10.1016/j.conb.2020.01.010. Epub 2020 Feb 21.
3
The catalytic nature of protein aggregation.
J Chem Phys. 2020 Jan 31;152(4):045101. doi: 10.1063/1.5133635.
4
α-Synuclein strains target distinct brain regions and cell types.
Nat Neurosci. 2020 Jan;23(1):21-31. doi: 10.1038/s41593-019-0541-x. Epub 2019 Dec 2.
5
Direct Observation of Murine Prion Protein Replication in Vitro.
J Am Chem Soc. 2018 Nov 7;140(44):14789-14798. doi: 10.1021/jacs.8b08311. Epub 2018 Oct 23.
6
Secondary nucleation in amyloid formation.
Chem Commun (Camb). 2018 Aug 2;54(63):8667-8684. doi: 10.1039/c8cc02204f.
7
Measurement of Tau Filament Fragmentation Provides Insights into Prion-like Spreading.
ACS Chem Neurosci. 2018 Jun 20;9(6):1276-1282. doi: 10.1021/acschemneuro.8b00094. Epub 2018 Apr 8.
8
What is the evidence that tau pathology spreads through prion-like propagation?
Acta Neuropathol Commun. 2017 Dec 19;5(1):99. doi: 10.1186/s40478-017-0488-7.
10
Scaling behaviour and rate-determining steps in filamentous self-assembly.
Chem Sci. 2017 Oct 1;8(10):7087-7097. doi: 10.1039/c7sc01965c. Epub 2017 Aug 31.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验