Suppr超能文献

血清来源的富含细胞外囊泡的分离物的拉曼光谱特征可能有助于中枢神经系统肿瘤的诊断。

Raman Spectral Signatures of Serum-Derived Extracellular Vesicle-Enriched Isolates May Support the Diagnosis of CNS Tumors.

作者信息

Bukva Matyas, Dobra Gabriella, Gomez-Perez Juan, Koos Krisztian, Harmati Maria, Gyukity-Sebestyen Edina, Biro Tamas, Jenei Adrienn, Kormondi Sandor, Horvath Peter, Konya Zoltan, Klekner Almos, Buzas Krisztina

机构信息

Laboratory of Microscopic Image Analysis and Machine Learning, Biological Research Centre, Institute of Biochemistry, Eötvös Loránd Research Network (ELKH), H-6726 Szeged, Hungary.

Department of Medical Genetics, Doctoral School of Interdisciplinary Medicine, University of Szeged, H-6720 Szeged, Hungary.

出版信息

Cancers (Basel). 2021 Mar 19;13(6):1407. doi: 10.3390/cancers13061407.

Abstract

Investigating the molecular composition of small extracellular vesicles (sEVs) for tumor diagnostic purposes is becoming increasingly popular, especially for diseases for which diagnosis is challenging, such as central nervous system (CNS) malignancies. Thorough examination of the molecular content of sEVs by Raman spectroscopy is a promising but hitherto barely explored approach for these tumor types. We attempt to reveal the potential role of serum-derived sEVs in diagnosing CNS tumors through Raman spectroscopic analyses using a relevant number of clinical samples. A total of 138 serum samples were obtained from four patient groups (glioblastoma multiforme, non-small-cell lung cancer brain metastasis, meningioma and lumbar disc herniation as control). After isolation, characterization and Raman spectroscopic assessment of sEVs, the Principal Component Analysis-Support Vector Machine (PCA-SVM) algorithm was performed on the Raman spectra for pairwise classifications. Classification accuracy (CA), sensitivity, specificity and the Area Under the Curve (AUC) value derived from Receiver Operating Characteristic (ROC) analyses were used to evaluate the performance of classification. The groups compared were distinguishable with 82.9-92.5% CA, 80-95% sensitivity and 80-90% specificity. AUC scores in the range of 0.82-0.9 suggest excellent and outstanding classification performance. Our results support that Raman spectroscopic analysis of sEV-enriched isolates from serum is a promising method that could be further developed in order to be applicable in the diagnosis of CNS tumors.

摘要

为肿瘤诊断目的研究小细胞外囊泡(sEVs)的分子组成正变得越来越流行,尤其是对于诊断具有挑战性的疾病,如中枢神经系统(CNS)恶性肿瘤。通过拉曼光谱对sEVs的分子内容进行全面检查,对于这些肿瘤类型来说是一种有前景但迄今几乎未被探索的方法。我们试图通过使用相关数量的临床样本进行拉曼光谱分析,揭示血清来源的sEVs在诊断CNS肿瘤中的潜在作用。总共从四个患者组(多形性胶质母细胞瘤、非小细胞肺癌脑转移、脑膜瘤和作为对照的腰椎间盘突出症)获得了138份血清样本。在对sEVs进行分离、表征和拉曼光谱评估后,对拉曼光谱执行主成分分析 - 支持向量机(PCA - SVM)算法进行两两分类。使用从受试者工作特征(ROC)分析得出的分类准确率(CA)、敏感性、特异性和曲线下面积(AUC)值来评估分类性能。所比较的组之间的CA为82.9 - 92.5%,敏感性为80 - 95%,特异性为80 - 90%,具有可区分性。AUC分数在0.82 - 0.9范围内表明分类性能优异且出色。我们的结果支持,对血清中富含sEVs的分离物进行拉曼光谱分析是一种有前景的方法,可进一步开发以便应用于CNS肿瘤的诊断。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9709/8003579/c8d708ecc563/cancers-13-01407-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验