Suppr超能文献

通过液相扫描透射电子显微镜研究溶液中团簇云介导的纳米晶化的原子机制

Atomic Mechanisms of Nanocrystallization via Cluster-Clouds in Solution Studied by Liquid-Phase Scanning Transmission Electron Microscopy.

作者信息

Dachraoui Walid, Keller Debora, Henninen Trond R, Ashton Olivia J, Erni Rolf

机构信息

Electron Microscopy Center, Empa-Swiss Federal Laboratories for Materials Science and Technology, Überlandstrasse 129, CH-8600, Dübendorf, Switzerland.

出版信息

Nano Lett. 2021 Apr 14;21(7):2861-2869. doi: 10.1021/acs.nanolett.0c04965. Epub 2021 Apr 5.

Abstract

The formation of nanocrystals is at the heart of various scientific disciplines, but the atomic mechanisms underlying the early stages of crystallization from supersaturated solutions are still rather unclear. Here, we used liquid-phase scanning transmission electron microscopy to study at the atomic level the very early stages of gold nanocrystal growth, and the evolution of its crystallinity. We found that the nucleation is initiated by the formation of poorly crystalline nanoparticles. These are transformed into monocrystals via nanocrystallization governed by a complex process of multiple out-and-in exchanges of matter between a crystalline-core and a disordered-shell, referred to as the cluster-cloud. Our observations at the crystal/cluster-cloud interface during growth demonstrate that the initially formed nanocrystals expel the poorly crystallized phases as nanoclusters into the cluster-cloud, then readsorb it by two distinct pathways, namely, by (i) monomer attachments and (ii) nanocluster coalescence. This growth process eventually leads to the formation of monocrystalline nanoparticles.

摘要

纳米晶体的形成是诸多科学学科的核心,但过饱和溶液结晶早期阶段的原子机制仍相当不明晰。在此,我们利用液相扫描透射电子显微镜在原子水平上研究金纳米晶体生长的极早期阶段及其结晶度的演变。我们发现,成核是由结晶性较差的纳米颗粒的形成引发的。这些颗粒通过纳米结晶转化为单晶,该纳米结晶过程由一个复杂的过程控制,即结晶核与无序壳层之间物质的多次进出交换,这一过程被称为簇云。我们在生长过程中对晶体/簇云界面的观察表明,最初形成的纳米晶体将结晶性较差的相作为纳米簇排到簇云中,然后通过两种不同途径重新吸附,即:(i)单体附着和(ii)纳米簇聚结。这一生长过程最终导致单晶纳米颗粒的形成。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验