Suppr超能文献

用于牙周组织再生的氧化镁纳米颗粒复合聚己内酯/明胶衍生同轴静电纺丝纳米纤维素膜

MgO Nanoparticles-Incorporated PCL/Gelatin-Derived Coaxial Electrospinning Nanocellulose Membranes for Periodontal Tissue Regeneration.

作者信息

Peng Wenzao, Ren Shuangshuang, Zhang Yibo, Fan Ruyi, Zhou Yi, Li Lu, Xu Xuanwen, Xu Yan

机构信息

Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China.

Department of Periodontics, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China.

出版信息

Front Bioeng Biotechnol. 2021 Mar 25;9:668428. doi: 10.3389/fbioe.2021.668428. eCollection 2021.

Abstract

Electrospinning technique has attracted considerable attention in fabrication of cellulose nanofibrils or nanocellulose membranes, in which polycaprolactone (PCL) could be used as a promising precursor to prepare various cellulose nanofibril membranes for periodontal tissue regeneration. Conventional bio-membranes and cellulose films used in guided tissue regeneration (GTR) can prevent the downgrowth of epithelial cells, fibroblasts, and connective tissue in the area of tooth root but have limitations related to osteogenic and antimicrobial properties. Cellulose nanofibrils can be used as an ideal drug delivery material to encapsulate and carry some drugs. In this study, magnesium oxide (MgO) nanoparticles-incorporated PCL/gelatin core-shell nanocellulose periodontal membranes were fabricated using coaxial electrospinning technique, which was termed as Coaxial-MgO. The membranes using single-nozzle electrospinning technique, namely Blending-MgO and Blending-Blank, were used as control. The morphology and physicochemical property of these nanocellulose membranes were characterized by scanning electron microscopy (SEM), energy-dispersive spectrum of X-ray (EDS), transmission electron microscopy (TEM), contact angle, and thermogravimetric analysis (TGA). The results showed that the incorporation of MgO nanoparticles barely affected the morphology and mechanical property of nanocellulose membranes. Coaxial-MgO with core-shell fiber structure had better hydrophilic property and sustainable release of magnesium ion (Mg). CCK-8 cell proliferation and EdU staining demonstrated that Coaxial-MgO membranes showed better human periodontal ligament stem cells (hPDLSCs) proliferation rates compared with the other group due to its gelatin shell with great biocompatibility and hydrophilicity. SEM and immunofluorescence assay results illustrated that the Coaxial-MgO scaffold significantly enhanced hPDLSCs adhesion. osteogenic and antibacterial properties showed that Coaxial-MgO membrane enhanced alkaline phosphatase (ALP) activity, formation of mineralized nodules, osteogenic-related genes [ALP, collagen type 1 (COL1), runt-related transcription factor 2 (Runx2)], and high antibacterial properties toward () and () when compared with controls. Our findings suggested that MgO nanoparticles-incorporated coaxial electrospinning PCL-derived nanocellulose periodontal membranes might have great prospects for periodontal tissue regeneration.

摘要

静电纺丝技术在制备纤维素纳米纤维或纳米纤维素膜方面引起了广泛关注,其中聚己内酯(PCL)可作为一种有前景的前体,用于制备各种用于牙周组织再生的纤维素纳米纤维膜。传统的用于引导组织再生(GTR)的生物膜和纤维素膜可以防止上皮细胞、成纤维细胞和结缔组织在牙根区域向下生长,但在成骨和抗菌性能方面存在局限性。纤维素纳米纤维可作为一种理想的药物递送材料,用于封装和携带某些药物。在本研究中,采用同轴静电纺丝技术制备了氧化镁(MgO)纳米颗粒掺杂的PCL/明胶核壳纳米纤维素牙周膜,称为同轴-MgO。使用单喷嘴静电纺丝技术制备的膜,即共混-MgO和共混-空白,用作对照。通过扫描电子显微镜(SEM)、X射线能谱(EDS)、透射电子显微镜(TEM)、接触角和热重分析(TGA)对这些纳米纤维素膜的形态和理化性质进行了表征。结果表明,MgO纳米颗粒的掺入对纳米纤维素膜的形态和力学性能影响不大。具有核壳纤维结构的同轴-MgO具有更好的亲水性和镁离子(Mg)的可持续释放性能。CCK-8细胞增殖和EdU染色表明,同轴-MgO膜由于其具有良好生物相容性和亲水性的明胶壳,与其他组相比,显示出更好的人牙周膜干细胞(hPDLSCs)增殖率。SEM和免疫荧光分析结果表明,同轴-MgO支架显著增强了hPDLSCs的粘附。成骨和抗菌性能表明,与对照组相比,同轴-MgO膜增强了碱性磷酸酶(ALP)活性、矿化结节的形成、成骨相关基因[ALP、I型胶原(COL1)、 runt相关转录因子2(Runx2)],并对()和()具有高抗菌性能。我们的研究结果表明,MgO纳米颗粒掺杂的同轴静电纺丝PCL衍生的纳米纤维素牙周膜在牙周组织再生方面可能具有广阔的前景。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ee42/8026878/eccc91d1f7c8/fbioe-09-668428-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验