Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, 90089, United States.
Division of Vascular Surgery and Endovascular Therapy, Department of Surgery, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, United States.
Biomaterials. 2021 Jun;273:120810. doi: 10.1016/j.biomaterials.2021.120810. Epub 2021 Apr 9.
In atherosclerosis, resident vascular smooth muscle cells (VSMCs) in the blood vessels become highly plastic and undergo phenotypic switching from the quiescent, contractile phenotype to the migratory and proliferative, synthetic phenotype. Additionally, recent VSMC lineage-tracing mouse models of atherosclerosis have found that VSMCs transdifferentiate into macrophage-like and osteochondrogenic cells and make up to 70% of cells found in atherosclerotic plaques. Given VSMC phenotypic switching is regulated by microRNA-145 (miR-145), we hypothesized that nanoparticle-mediated delivery of miR-145 to VSMCs has the potential to mitigate atherosclerosis development by inhibiting plaque-propagating cell types derived from VSMCs. To test our hypothesis, we synthesized miR-145 micelles targeting the C-C chemokine receptor-2 (CCR2), which is highly expressed on synthetic VSMCs. When miR-145 micelles were incubated with human aortic VSMCs in vitro, >90% miR-145 micelles escaped the lysosomal pathway in 4 hours and released the miR cargo under cytosolic levels of glutathione, an endogenous reducing agent. As such, miR-145 micelles rescued atheroprotective contractile markers, myocardin, α-SMA, and calponin, in synthetic VSMCs in vitro. In early-stage atherosclerotic ApoE mice, one dose of miR-145 micelles prevented lesion growth by 49% and sustained an increased level of miR-145 expression after 2 weeks post-treatment. Additionally, miR-145 micelles inhibited 35% and 43% plaque growth compared to free miR-145 and PBS, respectively, in mid-stage atherosclerotic ApoE mice. Collectively, we present a novel therapeutic strategy and cell target for atherosclerosis, and present miR-145 micelles as a viable nanotherapeutic that can intervene atherosclerosis progression at both early and later stages of disease.
在动脉粥样硬化中,血管中的常驻血管平滑肌细胞(VSMCs)变得高度可塑性,并经历从静止、收缩表型到迁移和增殖、合成表型的表型转换。此外,最近的动脉粥样硬化 VSMC 谱系追踪小鼠模型发现,VSMCs 转分化为巨噬细胞样和骨软骨细胞,并构成动脉粥样硬化斑块中发现的细胞的 70%。鉴于 VSMC 表型转换受 microRNA-145(miR-145)调节,我们假设通过将 miR-145 递送至 VSMCs 的纳米颗粒可以通过抑制源自 VSMCs 的促进斑块生长的细胞类型来减轻动脉粥样硬化的发展。为了验证我们的假设,我们合成了针对 C-C 趋化因子受体-2(CCR2)的 miR-145 胶束,该受体在合成的 VSMCs 上高度表达。当 miR-145 胶束在体外与人主动脉 VSMCs 孵育时,超过 90%的 miR-145 胶束在 4 小时内逃脱溶酶体途径,并在细胞溶质水平的谷胱甘肽(内源性还原剂)下释放 miR 货物。因此,miR-145 胶束在体外拯救了合成的 VSMCs 中的保护性收缩标志物肌球蛋白、α-SMA 和钙调蛋白。在早期动脉粥样硬化 ApoE 小鼠中,单次给予 miR-145 胶束可使病变生长减少 49%,并在治疗后 2 周持续增加 miR-145 的表达水平。此外,与游离 miR-145 和 PBS 相比,miR-145 胶束分别抑制了中期动脉粥样硬化 ApoE 小鼠 35%和 43%的斑块生长。总的来说,我们提出了一种治疗动脉粥样硬化的新的治疗策略和细胞靶点,并提出 miR-145 胶束作为一种可行的纳米治疗药物,可以在疾病的早期和晚期阶段干预动脉粥样硬化的进展。