Suppr超能文献

WormPose:用于秀丽隐杆线虫姿态估计的图像合成和卷积网络。

WormPose: Image synthesis and convolutional networks for pose estimation in C. elegans.

机构信息

Biological Physics Theory Unit, OIST Graduate University, Onna, Japan.

Lunenfeld-Tanenbaum Research Institute, University of Toronto, Toronto, Canada.

出版信息

PLoS Comput Biol. 2021 Apr 27;17(4):e1008914. doi: 10.1371/journal.pcbi.1008914. eCollection 2021 Apr.

Abstract

An important model system for understanding genes, neurons and behavior, the nematode worm C. elegans naturally moves through a variety of complex postures, for which estimation from video data is challenging. We introduce an open-source Python package, WormPose, for 2D pose estimation in C. elegans, including self-occluded, coiled shapes. We leverage advances in machine vision afforded from convolutional neural networks and introduce a synthetic yet realistic generative model for images of worm posture, thus avoiding the need for human-labeled training. WormPose is effective and adaptable for imaging conditions across worm tracking efforts. We quantify pose estimation using synthetic data as well as N2 and mutant worms in on-food conditions. We further demonstrate WormPose by analyzing long (∼ 8 hour), fast-sampled (∼ 30 Hz) recordings of on-food N2 worms to provide a posture-scale analysis of roaming/dwelling behaviors.

摘要

作为理解基因、神经元和行为的重要模型系统,秀丽隐杆线虫自然会经历各种复杂的姿势,这使得从视频数据中进行估计具有挑战性。我们引入了一个开源的 Python 包 WormPose,用于秀丽隐杆线虫的 2D 姿势估计,包括自遮挡、卷曲的形状。我们利用卷积神经网络提供的机器视觉方面的进展,并引入了一个用于线虫姿势图像的合成但逼真的生成模型,从而避免了对人工标记训练的需求。WormPose 对于跨线虫跟踪工作的成像条件都很有效和适应性强。我们使用合成数据以及在食物条件下的 N2 和突变线虫来量化姿势估计。我们进一步通过分析在食物上的 N2 线虫的长时间(约 8 小时)、快速采样(约 30 Hz)记录来展示 WormPose,从而提供漫游/停留行为的姿势尺度分析。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4506/8078761/b1b2860ab100/pcbi.1008914.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验