Wellcome Sanger Institute, Hinxton, UK.
Wellcome-MRC Cambridge Stem Cell Institute, Cambridge Biomedical Campus, Cambridge, UK.
Nature. 2021 May;593(7859):405-410. doi: 10.1038/s41586-021-03477-4. Epub 2021 Apr 28.
Somatic mutations drive the development of cancer and may contribute to ageing and other diseases. Despite their importance, the difficulty of detecting mutations that are only present in single cells or small clones has limited our knowledge of somatic mutagenesis to a minority of tissues. Here, to overcome these limitations, we developed nanorate sequencing (NanoSeq), a duplex sequencing protocol with error rates of less than five errors per billion base pairs in single DNA molecules from cell populations. This rate is two orders of magnitude lower than typical somatic mutation loads, enabling the study of somatic mutations in any tissue independently of clonality. We used this single-molecule sensitivity to study somatic mutations in non-dividing cells across several tissues, comparing stem cells to differentiated cells and studying mutagenesis in the absence of cell division. Differentiated cells in blood and colon displayed remarkably similar mutation loads and signatures to their corresponding stem cells, despite mature blood cells having undergone considerably more divisions. We then characterized the mutational landscape of post-mitotic neurons and polyclonal smooth muscle, confirming that neurons accumulate somatic mutations at a constant rate throughout life without cell division, with similar rates to mitotically active tissues. Together, our results suggest that mutational processes that are independent of cell division are important contributors to somatic mutagenesis. We anticipate that the ability to reliably detect mutations in single DNA molecules could transform our understanding of somatic mutagenesis and enable non-invasive studies on large-scale cohorts.
体细胞突变驱动癌症的发展,并可能导致衰老和其他疾病。尽管它们很重要,但由于仅存在于单细胞或小克隆中的突变的检测难度,我们对体细胞突变的认识仅限于少数组织。在这里,为了克服这些限制,我们开发了纳米测序(NanoSeq),这是一种双链测序协议,在细胞群体中单 DNA 分子的错误率低于每十亿碱基对 5 个错误。这个速率比典型的体细胞突变负荷低两个数量级,使我们能够独立于克隆性研究任何组织中的体细胞突变。我们利用这种单分子灵敏度来研究几个组织中不分裂细胞中的体细胞突变,将干细胞与分化细胞进行比较,并在没有细胞分裂的情况下研究诱变。尽管成熟血细胞经历了更多的分裂,但血液和结肠中的分化细胞的突变负荷和特征与相应的干细胞非常相似。然后,我们描述了有丝分裂后神经元和多克隆平滑肌的突变景观,证实神经元在没有细胞分裂的情况下,其一生中以恒定的速率积累体细胞突变,与有丝分裂活跃的组织相似。总的来说,我们的结果表明,不依赖于细胞分裂的突变过程是体细胞突变的重要贡献者。我们预计,能够可靠地检测单 DNA 分子中的突变,可能会改变我们对体细胞突变的理解,并能够对大规模队列进行非侵入性研究。