Suppr超能文献

DNA 结合事件的记录揭示了被重新利用的白色念珠菌调控网络对肠道共生的重要性。

Recording of DNA-binding events reveals the importance of a repurposed Candida albicans regulatory network for gut commensalism.

机构信息

Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94143, USA.

Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94143, USA; Department of Medicine, Division of Infectious Diseases, University of California, San Francisco, San Francisco, CA 94143, USA.

出版信息

Cell Host Microbe. 2021 Jun 9;29(6):1002-1013.e9. doi: 10.1016/j.chom.2021.03.019. Epub 2021 Apr 28.

Abstract

Candida albicans is a fungal component of the human gut microbiota and an opportunistic pathogen. C. albicans transcription factors (TFs), Wor1 and Efg1, are master regulators of an epigenetic switch required for fungal mating that also control colonization of the mammalian gut. We show that additional mating regulators, WOR2, WOR3, WOR4, AHR1, CZF1, and SSN6, also influence gut commensalism. Using Calling Card-seq to record Candida TF DNA-binding events in the host, we examine the role and relationships of these regulators during murine gut colonization. By comparing in-host transcriptomes of regulatory mutants with enhanced versus diminished commensal fitness, we also identify a set of candidate commensalism effectors. These include Cht2, a GPI-linked chitinase whose gene is bound by Wor1, Czf1, and Efg1 in vivo, that we show promotes commensalism. Thus, the network required for a C. albicans sexual switch is biochemically active in the host intestine and repurposed to direct commensalism.

摘要

白色念珠菌是人类肠道微生物群的真菌组成部分,也是一种机会性病原体。白色念珠菌转录因子(TFs),Wor1 和 Efg1,是真菌交配所需的表观遗传开关的主要调节因子,也控制着哺乳动物肠道的定植。我们表明,其他交配调节因子,WOR2、WOR3、WOR4、AHR1、CZF1 和 SSN6,也影响肠道共生。使用 Calling Card-seq 在宿主中记录白色念珠菌 TF 的 DNA 结合事件,我们研究了这些调节剂在小鼠肠道定植过程中的作用和关系。通过比较具有增强和减弱共生适应性的调节突变体的体内转录组,我们还确定了一组候选共生效应因子。其中包括 Cht2,一种 GPI 连接的几丁质酶,其基因在体内被 Wor1、Czf1 和 Efg1 结合,我们证明它促进了共生。因此,白色念珠菌性转换所需的网络在宿主肠道中具有生物化学活性,并被重新用于指导共生。

相似文献

1
Recording of DNA-binding events reveals the importance of a repurposed Candida albicans regulatory network for gut commensalism.
Cell Host Microbe. 2021 Jun 9;29(6):1002-1013.e9. doi: 10.1016/j.chom.2021.03.019. Epub 2021 Apr 28.
3
Passage through the mammalian gut triggers a phenotypic switch that promotes Candida albicans commensalism.
Nat Genet. 2013 Sep;45(9):1088-91. doi: 10.1038/ng.2710. Epub 2013 Jul 28.
4
Candida albicans Double Mutants Lacking both and Can Still Switch to Opaque.
mSphere. 2020 Sep 23;5(5):e00918-20. doi: 10.1128/mSphere.00918-20.
6
Hemizygosity Enables a Mutational Transition Governing Fungal Virulence and Commensalism.
Cell Host Microbe. 2019 Mar 13;25(3):418-431.e6. doi: 10.1016/j.chom.2019.01.005. Epub 2019 Feb 26.
7
Regulators of commensal and pathogenic life-styles of an opportunistic fungus-Candida albicans.
Yeast. 2021 Apr;38(4):243-250. doi: 10.1002/yea.3550. Epub 2021 Feb 23.
8
Serum Antibody Profile during Colonization of the Mouse Gut by Candida albicans: Relevance for Protection during Systemic Infection.
J Proteome Res. 2017 Jan 6;16(1):335-345. doi: 10.1021/acs.jproteome.6b00383. Epub 2016 Sep 30.
9
Candida albicans Morphogenesis Programs Control the Balance between Gut Commensalism and Invasive Infection.
Cell Host Microbe. 2019 Mar 13;25(3):432-443.e6. doi: 10.1016/j.chom.2019.02.008.
10
The rod cell, a small form of , possesses superior fitness to the host gut and adaptation to commensalism.
Acta Biochim Biophys Sin (Shanghai). 2024 Sep 9;56(9):1278-1288. doi: 10.3724/abbs.2024066.

引用本文的文献

2
Commensalism and pathogenesis of Candida albicans at the mucosal interface.
Nat Rev Microbiol. 2025 Apr 17. doi: 10.1038/s41579-025-01174-x.
3
Aloin remodels the cell wall of Candida albicans to reduce its hyphal virulence against oral candidiasis.
Appl Microbiol Biotechnol. 2025 Jan 24;109(1):21. doi: 10.1007/s00253-025-13411-7.
4
Strain-limited biofilm regulation through the Brg1-Rme1 circuit in .
mSphere. 2025 Jan 28;10(1):e0098024. doi: 10.1128/msphere.00980-24. Epub 2024 Dec 31.
5
Is Cryptococcus neoformans a pleomorphic fungus?
Curr Opin Microbiol. 2024 Dec;82:102539. doi: 10.1016/j.mib.2024.102539. Epub 2024 Sep 10.
6
Exploring the role of candidalysin in the pathogenicity of by gene set enrichment analysis and evolutionary dynamics.
Am J Transl Res. 2024 Jul 15;16(7):3191-3210. doi: 10.62347/IZYM9087. eCollection 2024.
7
Evolution and strain diversity advance exploration of biology.
mSphere. 2024 Aug 28;9(8):e0064123. doi: 10.1128/msphere.00641-23. Epub 2024 Jul 16.
8
and : global priority pathogens.
Microbiol Mol Biol Rev. 2024 Jun 27;88(2):e0002123. doi: 10.1128/mmbr.00021-23. Epub 2024 Jun 4.
9
Controlling : immune regulation of commensal fungi in the gut.
Infect Immun. 2024 Sep 10;92(9):e0051623. doi: 10.1128/iai.00516-23. Epub 2024 Apr 22.
10
Recent Advances in Understanding the Human Fungal Pathogen Hypoxia Response in Disease Progression.
Annu Rev Microbiol. 2023 Sep 15;77:403-425. doi: 10.1146/annurev-micro-032521-021745.

本文引用的文献

1
Epigenetic cell fate in Candida albicans is controlled by transcription factor condensates acting at super-enhancer-like elements.
Nat Microbiol. 2020 Nov;5(11):1374-1389. doi: 10.1038/s41564-020-0760-7. Epub 2020 Jul 27.
2
SciPy 1.0: fundamental algorithms for scientific computing in Python.
Nat Methods. 2020 Mar;17(3):261-272. doi: 10.1038/s41592-019-0686-2. Epub 2020 Feb 3.
3
Chitin Synthesis and Degradation in Fungi: Biology and Enzymes.
Adv Exp Med Biol. 2019;1142:153-167. doi: 10.1007/978-981-13-7318-3_8.
4
Candida albicans Morphogenesis Programs Control the Balance between Gut Commensalism and Invasive Infection.
Cell Host Microbe. 2019 Mar 13;25(3):432-443.e6. doi: 10.1016/j.chom.2019.02.008.
5
Commensal Candida albicans Positively Calibrates Systemic Th17 Immunological Responses.
Cell Host Microbe. 2019 Mar 13;25(3):404-417.e6. doi: 10.1016/j.chom.2019.02.004.
7
Hemizygosity Enables a Mutational Transition Governing Fungal Virulence and Commensalism.
Cell Host Microbe. 2019 Mar 13;25(3):418-431.e6. doi: 10.1016/j.chom.2019.01.005. Epub 2019 Feb 26.
8
Human Anti-fungal Th17 Immunity and Pathology Rely on Cross-Reactivity against Candida albicans.
Cell. 2019 Mar 7;176(6):1340-1355.e15. doi: 10.1016/j.cell.2019.01.041. Epub 2019 Feb 21.
9
Systematic gene overexpression in Candida albicans identifies a regulator of early adaptation to the mammalian gut.
Cell Microbiol. 2018 Nov;20(11):e12890. doi: 10.1111/cmi.12890. Epub 2018 Aug 7.
10
Effect of Antifungal Treatment in a Diet-Based Murine Model of Disseminated Candidiasis Acquired via the Gastrointestinal Tract.
Antimicrob Agents Chemother. 2016 Oct 21;60(11):6703-6708. doi: 10.1128/AAC.01144-16. Print 2016 Nov.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验