Suppr超能文献

检查点介导的 DNA 聚合酶 ε 外切酶活性的抑制作用可阻止由切除驱动的叉崩溃。

Checkpoint-mediated DNA polymerase ε exonuclease activity curbing counteracts resection-driven fork collapse.

机构信息

Center for Biological Research Margarita Salas (CIB-CSIC), Spanish National Research Council, Madrid, Spain.

Department of Pharmacological Sciences, Stony Brook University, Stony Brook, NY, USA.

出版信息

Mol Cell. 2021 Jul 1;81(13):2778-2792.e4. doi: 10.1016/j.molcel.2021.04.006. Epub 2021 Apr 30.

Abstract

DNA polymerase ε (Polε) carries out high-fidelity leading strand synthesis owing to its exonuclease activity. Polε polymerase and exonuclease activities are balanced, because of partitioning of nascent DNA strands between catalytic sites, so that net resection occurs when synthesis is impaired. In vivo, DNA synthesis stalling activates replication checkpoint kinases, which act to preserve the functional integrity of replication forks. We show that stalled Polε drives nascent strand resection causing fork functional collapse, averted via checkpoint-dependent phosphorylation. Polε catalytic subunit Pol2 is phosphorylated on serine 430, influencing partitioning between polymerase and exonuclease active sites. A phosphormimetic S430D change reduces exonucleolysis in vitro and counteracts fork collapse. Conversely, non-phosphorylatable pol2-S430A expression causes resection-driven stressed fork defects. Our findings reveal that checkpoint kinases switch Polε to an exonuclease-safe mode preventing nascent strand resection and stabilizing stalled replication forks. Elective partitioning suppression has implications for the diverse Polε roles in genome integrity maintenance.

摘要

DNA 聚合酶 ε(Polε)因其具有核酸外切酶活性而进行高保真的前导链合成。由于新生 DNA 链在催化位点之间的分配,Polε 的聚合酶和核酸外切酶活性达到平衡,因此当合成受到干扰时,净切除就会发生。在体内,DNA 合成停滞会激活复制检查点激酶,这些激酶的作用是保持复制叉的功能完整性。我们发现,停滞的 Polε 驱动新生链的切除,导致叉功能崩溃,通过检查点依赖性磷酸化来避免。Polε 的催化亚基 Pol2 丝氨酸 430 发生磷酸化,影响聚合酶和核酸外切酶活性位点之间的分配。体外实验中,磷酸模拟 S430D 突变减少核酸外切酶活性,从而阻止叉崩溃。相反,不可磷酸化的 pol2-S430A 表达导致切除驱动的有压力的叉缺陷。我们的研究结果表明,检查点激酶将 Polε 切换到核酸外切酶安全模式,防止新生链的切除并稳定停滞的复制叉。选择性分配抑制对 Polε 在维持基因组完整性方面的多种作用具有重要意义。

相似文献

1
Checkpoint-mediated DNA polymerase ε exonuclease activity curbing counteracts resection-driven fork collapse.
Mol Cell. 2021 Jul 1;81(13):2778-2792.e4. doi: 10.1016/j.molcel.2021.04.006. Epub 2021 Apr 30.
2
Exo1 processes stalled replication forks and counteracts fork reversal in checkpoint-defective cells.
Mol Cell. 2005 Jan 7;17(1):153-9. doi: 10.1016/j.molcel.2004.11.032.
3
Checkpoint Kinase Rad53 Couples Leading- and Lagging-Strand DNA Synthesis under Replication Stress.
Mol Cell. 2017 Oct 19;68(2):446-455.e3. doi: 10.1016/j.molcel.2017.09.018. Epub 2017 Oct 12.
4
Mrc1 and DNA polymerase epsilon function together in linking DNA replication and the S phase checkpoint.
Mol Cell. 2008 Oct 10;32(1):106-17. doi: 10.1016/j.molcel.2008.08.020.
7
Crystal structure of yeast DNA polymerase ε catalytic domain.
PLoS One. 2014 Apr 14;9(4):e94835. doi: 10.1371/journal.pone.0094835. eCollection 2014.
8
Rad53 limits CMG helicase uncoupling from DNA synthesis at replication forks.
Nat Struct Mol Biol. 2020 May;27(5):461-471. doi: 10.1038/s41594-020-0407-7. Epub 2020 Apr 27.
9
DNA polymerase ε leading strand signature mutations result from defects in its proofreading activity.
J Biol Chem. 2023 Jul;299(7):104913. doi: 10.1016/j.jbc.2023.104913. Epub 2023 Jun 10.
10
Pold4 subunit of replicative polymerase δ promotes fork slowing at broken templates.
DNA Repair (Amst). 2024 Jul;139:103688. doi: 10.1016/j.dnarep.2024.103688. Epub 2024 Apr 24.

引用本文的文献

1
S-phase checkpoint protects from aberrant replication fork processing and degradation.
Nucleic Acids Res. 2025 Jul 19;53(14). doi: 10.1093/nar/gkaf707.
5
Checkpoint kinase interaction with DNA polymerase alpha regulates replication progression during stress.
Wellcome Open Res. 2023 Jul 26;8:327. doi: 10.12688/wellcomeopenres.19617.1. eCollection 2023.
6
Replication DNA polymerases, genome instability and cancer therapies.
NAR Cancer. 2023 Jun 28;5(3):zcad033. doi: 10.1093/narcan/zcad033. eCollection 2023 Sep.
9
Rad53 arrests leading and lagging strand DNA synthesis via distinct mechanisms in response to DNA replication stress.
Bioessays. 2022 Sep;44(9):e2200061. doi: 10.1002/bies.202200061. Epub 2022 Jul 1.
10
A field guide to the proteomics of post-translational modifications in DNA repair.
Proteomics. 2022 Aug;22(15-16):e2200064. doi: 10.1002/pmic.202200064. Epub 2022 Jun 26.

本文引用的文献

1
DNA polymerase ε relies on a unique domain for efficient replisome assembly and strand synthesis.
Nat Commun. 2020 May 15;11(1):2437. doi: 10.1038/s41467-020-16095-x.
2
Rad53 limits CMG helicase uncoupling from DNA synthesis at replication forks.
Nat Struct Mol Biol. 2020 May;27(5):461-471. doi: 10.1038/s41594-020-0407-7. Epub 2020 Apr 27.
4
DNA damage kinase signaling: checkpoint and repair at 30 years.
EMBO J. 2019 Sep 16;38(18):e101801. doi: 10.15252/embj.2019101801. Epub 2019 Aug 8.
5
A recurrent cancer-associated substitution in DNA polymerase ε produces a hyperactive enzyme.
Nat Commun. 2019 Jan 22;10(1):374. doi: 10.1038/s41467-018-08145-2.
6
POLE3-POLE4 Is a Histone H3-H4 Chaperone that Maintains Chromatin Integrity during DNA Replication.
Mol Cell. 2018 Oct 4;72(1):112-126.e5. doi: 10.1016/j.molcel.2018.08.043. Epub 2018 Sep 11.
7
A mechanism for preventing asymmetric histone segregation onto replicating DNA strands.
Science. 2018 Sep 28;361(6409):1386-1389. doi: 10.1126/science.aat8849. Epub 2018 Aug 16.
8
Eukaryotic DNA polymerases.
Curr Opin Struct Biol. 2018 Dec;53:77-87. doi: 10.1016/j.sbi.2018.06.003. Epub 2018 Jul 10.
9
Separable roles for Mec1/ATR in genome maintenance, DNA replication, and checkpoint signaling.
Genes Dev. 2018 Jun 1;32(11-12):822-835. doi: 10.1101/gad.308148.117. Epub 2018 Jun 13.
10
Polε Instability Drives Replication Stress, Abnormal Development, and Tumorigenesis.
Mol Cell. 2018 May 17;70(4):707-721.e7. doi: 10.1016/j.molcel.2018.04.008. Epub 2018 May 10.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验