Suppr超能文献

靶向严重急性呼吸综合征冠状病毒2(SARS-CoV-2)基因组中的保守茎环2基序

Targeting the Conserved Stem Loop 2 Motif in the SARS-CoV-2 Genome.

作者信息

Lulla Valeria, Wandel Michal P, Bandyra Katarzyna J, Ulferts Rachel, Wu Mary, Dendooven Tom, Yang Xiaofei, Doyle Nicole, Oerum Stephanie, Beale Rupert, O'Rourke Sara M, Randow Felix, Maier Helena J, Scott William, Ding Yiliang, Firth Andrew E, Bloznelyte Kotryna, Luisi Ben F

机构信息

Department of Pathology, Division of Virology, University of Cambridge, Cambridge, United Kingdom.

MRC Laboratory of Molecular Biology, Cambridge, United Kingdom.

出版信息

J Virol. 2021 Jun 24;95(14):e0066321. doi: 10.1128/JVI.00663-21.

Abstract

RNA structural elements occur in numerous single-stranded positive-sense RNA viruses. The stem-loop 2 motif (s2m) is one such element with an unusually high degree of sequence conservation, being found in the 3' untranslated region (UTR) in the genomes of many astroviruses, some picornaviruses and noroviruses, and a variety of coronaviruses, including severe acute respiratory syndrome coronavirus (SARS-CoV) and SARS-CoV-2. The evolutionary conservation and its occurrence in all viral subgenomic transcripts imply a key role for s2m in the viral infection cycle. Our findings indicate that the element, while stably folded, can nonetheless be invaded and remodeled spontaneously by antisense oligonucleotides (ASOs) that initiate pairing in exposed loops and trigger efficient sequence-specific RNA cleavage in reporter assays. ASOs also act to inhibit replication in an astrovirus replicon model system in a sequence-specific, dose-dependent manner and inhibit SARS-CoV-2 replication in cell culture. Our results thus permit us to suggest that the s2m element is readily targeted by ASOs, which show promise as antiviral agents. The highly conserved stem-loop 2 motif (s2m) is found in the genomes of many RNA viruses, including SARS-CoV-2. Our findings indicate that the s2m element can be targeted by antisense oligonucleotides. The antiviral potential of this element represents a promising start for further research into targeting conserved elements in RNA viruses.

摘要

RNA结构元件存在于众多单链正义RNA病毒中。茎环2基序(s2m)就是这样一种元件,其序列保守程度异常高,在许多星状病毒、一些小RNA病毒和诺如病毒的基因组3'非翻译区(UTR)中都能找到,在包括严重急性呼吸综合征冠状病毒(SARS-CoV)和SARS-CoV-2在内的多种冠状病毒中也存在。其进化保守性以及在所有病毒亚基因组转录本中的出现,意味着s2m在病毒感染周期中起关键作用。我们的研究结果表明,该元件虽然折叠稳定,但仍可被反义寡核苷酸(ASO)自发侵入并重塑,这些反义寡核苷酸在暴露的环中起始配对,并在报告基因检测中触发有效的序列特异性RNA切割。ASO还以序列特异性、剂量依赖性方式在星状病毒复制子模型系统中抑制复制,并在细胞培养中抑制SARS-CoV-2复制。因此,我们的结果使我们能够提出,s2m元件很容易被ASO靶向,ASO有望成为抗病毒药物。高度保守的茎环2基序(s2m)存在于包括SARS-CoV-2在内的许多RNA病毒的基因组中。我们的研究结果表明,s2m元件可被反义寡核苷酸靶向。该元件的抗病毒潜力为进一步研究靶向RNA病毒中的保守元件提供了一个有前景的开端。

相似文献

1
Targeting the Conserved Stem Loop 2 Motif in the SARS-CoV-2 Genome.
J Virol. 2021 Jun 24;95(14):e0066321. doi: 10.1128/JVI.00663-21.
2
The Highly Conserved Stem-Loop II Motif Is Dispensable for SARS-CoV-2.
J Virol. 2023 Jun 29;97(6):e0063523. doi: 10.1128/jvi.00635-23. Epub 2023 May 18.
5
The highly conserved stem-loop II motif is dispensable for SARS-CoV-2.
bioRxiv. 2023 Mar 16:2023.03.15.532878. doi: 10.1101/2023.03.15.532878.
6
The Short- and Long-Range RNA-RNA Interactome of SARS-CoV-2.
Mol Cell. 2020 Dec 17;80(6):1067-1077.e5. doi: 10.1016/j.molcel.2020.11.004. Epub 2020 Nov 5.
8
9
Anti-SARS-CoV-2 gapmer antisense oligonucleotides targeting the main protease region of viral RNA.
Antiviral Res. 2024 Oct;230:105992. doi: 10.1016/j.antiviral.2024.105992. Epub 2024 Aug 23.
10
Pervasive RNA Secondary Structure in the Genomes of SARS-CoV-2 and Other Coronaviruses.
mBio. 2020 Oct 30;11(6):e01661-20. doi: 10.1128/mBio.01661-20.

引用本文的文献

2
Antisense oligonucleotides targeting the SARS-CoV-2 nucleocapsid gene decrease viral titers in hamsters.
Mol Ther Nucleic Acids. 2025 Jun 21;36(3):102612. doi: 10.1016/j.omtn.2025.102612. eCollection 2025 Sep 9.
4
Decoding the genome of SARS-CoV-2: a pathway to drug development through translation inhibition.
RNA Biol. 2024 Jan;21(1):1-18. doi: 10.1080/15476286.2024.2433830. Epub 2024 Dec 4.
5
Mechanistic insights into ASO-RNA complexation: Advancing antisense oligonucleotide design strategies.
Mol Ther Nucleic Acids. 2024 Oct 4;35(4):102351. doi: 10.1016/j.omtn.2024.102351. eCollection 2024 Dec 10.
6
Inhibition of SARS-CoV-2 growth in the lungs of mice by a peptide-conjugated morpholino oligomer targeting viral RNA.
Mol Ther Nucleic Acids. 2024 Sep 10;35(4):102331. doi: 10.1016/j.omtn.2024.102331. eCollection 2024 Dec 10.
7
Genomic Evolution Strategy in SARS-CoV-2 Lineage B: Coevolution of Elements.
Curr Issues Mol Biol. 2024 Jun 9;46(6):5744-5776. doi: 10.3390/cimb46060344.
8
Buffer choice and pH strongly influence phase separation of SARS-CoV-2 nucleocapsid with RNA.
Mol Biol Cell. 2024 May 1;35(5):ar73. doi: 10.1091/mbc.E23-12-0500. Epub 2024 Apr 3.
10
Tertiary folds of the SL5 RNA from the 5' proximal region of SARS-CoV-2 and related coronaviruses.
Proc Natl Acad Sci U S A. 2024 Mar 5;121(10):e2320493121. doi: 10.1073/pnas.2320493121. Epub 2024 Mar 1.

本文引用的文献

1
In vivo structural characterization of the SARS-CoV-2 RNA genome identifies host proteins vulnerable to repurposed drugs.
Cell. 2021 Apr 1;184(7):1865-1883.e20. doi: 10.1016/j.cell.2021.02.008. Epub 2021 Feb 9.
2
RNA sequence and ligand binding alter conformational profile of SARS-CoV-2 stem loop II motif.
Biochem Biophys Res Commun. 2021 Mar 19;545:75-80. doi: 10.1016/j.bbrc.2021.01.013. Epub 2021 Jan 14.
3
Comprehensive in vivo secondary structure of the SARS-CoV-2 genome reveals novel regulatory motifs and mechanisms.
Mol Cell. 2021 Feb 4;81(3):584-598.e5. doi: 10.1016/j.molcel.2020.12.041. Epub 2021 Jan 1.
4
Gene editing and RNAi approaches for COVID-19 diagnostics and therapeutics.
Gene Ther. 2021 Jun;28(6):290-305. doi: 10.1038/s41434-020-00209-7. Epub 2020 Dec 14.
5
The Short- and Long-Range RNA-RNA Interactome of SARS-CoV-2.
Mol Cell. 2020 Dec 17;80(6):1067-1077.e5. doi: 10.1016/j.molcel.2020.11.004. Epub 2020 Nov 5.
6
SARS-CoV-2 structure and replication characterized by in situ cryo-electron tomography.
Nat Commun. 2020 Nov 18;11(1):5885. doi: 10.1038/s41467-020-19619-7.
7
Secondary structure determination of conserved SARS-CoV-2 RNA elements by NMR spectroscopy.
Nucleic Acids Res. 2020 Dec 16;48(22):12415-12435. doi: 10.1093/nar/gkaa1013.
8
Genome-wide mapping of SARS-CoV-2 RNA structures identifies therapeutically-relevant elements.
Nucleic Acids Res. 2020 Dec 16;48(22):12436-12452. doi: 10.1093/nar/gkaa1053.
9
Where are we with understanding of COVID-19?
Adv Biol Regul. 2020 Dec;78:100738. doi: 10.1016/j.jbior.2020.100738. Epub 2020 Jun 20.
10
SARS-CoV-2 vaccines in development.
Nature. 2020 Oct;586(7830):516-527. doi: 10.1038/s41586-020-2798-3. Epub 2020 Sep 23.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验