Suppr超能文献

骨髓来源抑制细胞:标志物、分化、状态和未解决的复杂性。

MDSC: Markers, development, states, and unaddressed complexity.

机构信息

The Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA.

The Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Human Immune Monitoring Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA.

出版信息

Immunity. 2021 May 11;54(5):875-884. doi: 10.1016/j.immuni.2021.04.004.

Abstract

Myeloid-derived suppressor cells (MDSCs) are one of the most discussed biological entities in immunology. While the context and classification of this group of cells has evolved, MDSCs most commonly describe cells arising during chronic inflammation, especially late-stage cancers, and are defined by their T cell immunosuppressive functions. This MDSC concept has helped explain myeloid phenomena associated with disease outcome, but currently lacks clear definitions and a unifying framework across pathologies. Here, we propose such a framework to classify MDSCs as discrete cell states based on activation signals in myeloid populations leading to suppressive modes characterized by specific, measurable effects. Developing this level of knowledge of myeloid states across pathological conditions may ultimately transform how disparate diseases are grouped and treated.

摘要

髓系来源的抑制性细胞(MDSCs)是免疫学中讨论最多的生物实体之一。尽管该细胞群的背景和分类已经发生了演变,但 MDSCs 最常用于描述在慢性炎症,尤其是晚期癌症中出现的细胞,并因其 T 细胞免疫抑制功能而被定义。MDSC 概念有助于解释与疾病结果相关的骨髓现象,但目前缺乏明确的定义和跨病理学的统一框架。在这里,我们提出了这样一个框架,根据导致抑制模式的髓系群体中的激活信号将 MDSC 分类为离散的细胞状态,抑制模式的特征是具有特定的、可测量的作用。在病理条件下发展出对骨髓状态的这种水平的了解,最终可能会改变不同疾病的分组和治疗方式。

相似文献

1
MDSC: Markers, development, states, and unaddressed complexity.
Immunity. 2021 May 11;54(5):875-884. doi: 10.1016/j.immuni.2021.04.004.
2
Early Activation of Myeloid-Derived Suppressor Cells Participate in Sepsis-Induced Immune Suppression via PD-L1/PD-1 Axis.
Front Immunol. 2020 Jul 3;11:1299. doi: 10.3389/fimmu.2020.01299. eCollection 2020.
3
5
Myeloid-derived suppressor cells in the era of increasing myeloid cell diversity.
Nat Rev Immunol. 2021 Aug;21(8):485-498. doi: 10.1038/s41577-020-00490-y. Epub 2021 Feb 1.
6
Roles of Myeloid-Derived Suppressor Cell Subpopulations in Autoimmune Arthritis.
Front Immunol. 2018 Dec 4;9:2849. doi: 10.3389/fimmu.2018.02849. eCollection 2018.
7
Expansion of PMN-myeloid derived suppressor cells and their clinical relevance in patients with oral squamous cell carcinoma.
Oral Oncol. 2019 Aug;95:157-163. doi: 10.1016/j.oraloncology.2019.06.004. Epub 2019 Jun 22.
8
Clinical Relevance and Suppressive Capacity of Human Myeloid-Derived Suppressor Cell Subsets.
Clin Cancer Res. 2018 Oct 1;24(19):4834-4844. doi: 10.1158/1078-0432.CCR-17-3726. Epub 2018 Jun 18.
9
How to measure the immunosuppressive activity of MDSC: assays, problems and potential solutions.
Cancer Immunol Immunother. 2019 Apr;68(4):631-644. doi: 10.1007/s00262-018-2170-8. Epub 2018 May 21.

引用本文的文献

1
Pharmacological and genetic inhibition of ARG2 in CXCR2 myeloid-derived suppressor cells combats sepsis-induced lymphopenia.
Theranostics. 2025 Jul 11;15(16):7990-8011. doi: 10.7150/thno.112339. eCollection 2025.
2
Unraveling tumor cell‑tumor microenvironment crosstalk through antibody array technologies (Review).
Int J Oncol. 2025 Oct;67(4). doi: 10.3892/ijo.2025.5787. Epub 2025 Aug 24.
4
Restoring resident tissue macrophages to combat aging and cancer.
Nat Aging. 2025 Aug;5(8):1383-1392. doi: 10.1038/s43587-025-00898-y. Epub 2025 Aug 14.
5
Linking tumour angiogenesis and tumour immunity.
Nat Rev Immunol. 2025 Aug 14. doi: 10.1038/s41577-025-01211-z.
6
B7-H3 in Cancer Immunotherapy-Prospects and Challenges: A Review of the Literature.
Cells. 2025 Aug 6;14(15):1209. doi: 10.3390/cells14151209.
7
New Insights into Monocyte-Derived Macrophages in Glioblastoma.
Research (Wash D C). 2025 Aug 12;8:0836. doi: 10.34133/research.0836. eCollection 2025.
8
The immunomodulatory role of tumor-initiating cells in digestive system tumors: from mechanisms to therapy.
Front Immunol. 2025 Jul 24;16:1621464. doi: 10.3389/fimmu.2025.1621464. eCollection 2025.
9
The Role of Protein Kinases in the Suppressive Phenotype of Myeloid-Derived Suppressor Cells.
Int J Mol Sci. 2025 Jul 19;26(14):6936. doi: 10.3390/ijms26146936.

本文引用的文献

1
High-throughput single-cell quantification of hundreds of proteins using conventional flow cytometry and machine learning.
Sci Adv. 2021 Sep 24;7(39):eabg0505. doi: 10.1126/sciadv.abg0505. Epub 2021 Sep 22.
2
Single-cell metabolic profiling of human cytotoxic T cells.
Nat Biotechnol. 2021 Feb;39(2):186-197. doi: 10.1038/s41587-020-0651-8. Epub 2020 Aug 31.
3
TREM2 Modulation Remodels the Tumor Myeloid Landscape Enhancing Anti-PD-1 Immunotherapy.
Cell. 2020 Aug 20;182(4):886-900.e17. doi: 10.1016/j.cell.2020.07.013. Epub 2020 Aug 11.
4
Coupled scRNA-Seq and Intracellular Protein Activity Reveal an Immunosuppressive Role of TREM2 in Cancer.
Cell. 2020 Aug 20;182(4):872-885.e19. doi: 10.1016/j.cell.2020.06.032. Epub 2020 Aug 11.
5
Combinatorial Single-Cell Analyses of Granulocyte-Monocyte Progenitor Heterogeneity Reveals an Early Uni-potent Neutrophil Progenitor.
Immunity. 2020 Aug 18;53(2):303-318.e5. doi: 10.1016/j.immuni.2020.06.005. Epub 2020 Jun 23.
7
Mouse models of neutropenia reveal progenitor-stage-specific defects.
Nature. 2020 Jun;582(7810):109-114. doi: 10.1038/s41586-020-2227-7. Epub 2020 Apr 22.
8
Common germline variants of the human APOE gene modulate melanoma progression and survival.
Nat Med. 2020 Jul;26(7):1048-1053. doi: 10.1038/s41591-020-0879-3. Epub 2020 May 25.
9
An Engineered CRISPR-Cas9 Mouse Line for Simultaneous Readout of Lineage Histories and Gene Expression Profiles in Single Cells.
Cell. 2020 Jun 11;181(6):1410-1422.e27. doi: 10.1016/j.cell.2020.04.048. Epub 2020 May 14.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验