Institute of Molecular Biology, National Academy of Sciences of the Republic of Armenia, 0014, Yerevan, Armenia.
Denovo Sciences, 0033, Yerevan, Armenia.
J Comput Aided Mol Des. 2021 Jun;35(6):731-736. doi: 10.1007/s10822-021-00389-3. Epub 2021 May 13.
Virtual screening (VS) based on molecular docking is one of the most useful methods in computer-aided drug design. By allowing to identify computationally putative ligands binding to the proteins of interest, VS dramatically reduces the time and expense of the development of novel therapeutics. Among the limitations of the VS approaches is the low accuracy of scoring functions implemented in docking methods for assessing binding affinity. Many such scoring functions are developed for rapid, high-throughput evaluation of binding energy of multiple conformations generated by a searching algorithm. The methods for more rigorous calculation of binding affinity calculation are generally time-consuming. Even so, in many studies more accurate methods were used for rescoring of the final poses and false-positive hits evaluation. We performed VS for three benchmark sets and used energy minimization with MM/PB(GB)SA methods (molecular mechanics energies combined with the Poisson-Boltzmann or generalized Born and surface area) to rescore binding affinities. The comparison of the area under the curve (AUC), enrichment factor (EF), and Boltzmann-enhanced discrimination of receiver operating characteristics (BEDROC) showed essential improvements in the binding energy prediction after the rescoring. Finally, we provide a program for minimization and rescoring VS results based on freely available AmberTools. The code requires just the final binding poses of the ligand as the input and can be used with any docking program.
基于分子对接的虚拟筛选 (VS) 是计算机辅助药物设计中最有用的方法之一。通过允许识别计算上假定的配体与感兴趣的蛋白质结合,VS 极大地减少了新型治疗药物开发的时间和费用。VS 方法的局限性之一是对接方法中用于评估结合亲和力的评分函数的准确性较低。许多这样的评分函数是为快速、高通量评估搜索算法生成的多个构象的结合能而开发的。用于更严格的结合亲和力计算的方法通常耗时较长。即便如此,在许多研究中,更准确的方法还是用于最终构象的重新评分和假阳性命中的评估。我们对三个基准集进行了 VS,并使用 MM/PB(GB)SA 方法(分子力学能量与泊松-玻尔兹曼或广义 Born 和表面积相结合)进行能量最小化来重新计算结合亲和力。曲线下面积 (AUC)、富集因子 (EF) 和玻尔兹曼增强的接收者操作特征 (BEDROC) 的比较表明,重新评分后对结合能的预测有了实质性的提高。最后,我们提供了一个基于免费的 AmberTools 进行 VS 结果最小化和重新评分的程序。该代码仅需要配体的最终结合构象作为输入,可与任何对接程序一起使用。