Suppr超能文献

脂质代谢调节在抗肾纤维化中的可药性。

Druggability of lipid metabolism modulation against renal fibrosis.

机构信息

State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union medical college, Beijing, 100050, China.

出版信息

Acta Pharmacol Sin. 2022 Mar;43(3):505-519. doi: 10.1038/s41401-021-00660-1. Epub 2021 May 14.

Abstract

Renal fibrosis contributes to progressive damage to renal structure and function. It is a common pathological process as chronic kidney disease develops into kidney failure, irrespective of diverse etiologies, and eventually leads to death. However, there are no effective drugs for renal fibrosis treatment at present. Lipid aggregation in the kidney and consequent lipotoxicity always accompany chronic kidney disease and fibrosis. Numerous studies have revealed that restoring the defective fatty acid oxidation in the kidney cells can mitigate renal fibrosis. Thus, it is an important strategy to reverse the dysfunctional lipid metabolism in the kidney, by targeting critical regulators of lipid metabolism. In this review, we highlight the potential "druggability" of lipid metabolism to ameliorate renal fibrosis and provide current pre-clinical evidence, exemplified by some representative druggable targets and several other metabolic regulators with anti-renal fibrosis roles. Then, we introduce the preliminary progress of noncoding RNAs as promising anti-renal fibrosis drug targets from the perspective of lipid metabolism. Finally, we discuss the prospects and deficiencies of drug targeting lipid reprogramming in the kidney.

摘要

肾纤维化导致肾脏结构和功能进行性损伤。它是一种常见的病理过程,随着慢性肾脏病发展为肾衰竭,无论病因如何,最终都会导致死亡。然而,目前尚无有效的肾纤维化治疗药物。肾脏中的脂质聚集和随之而来的脂毒性总是伴随着慢性肾脏病和纤维化。大量研究表明,恢复肾脏细胞中缺陷的脂肪酸氧化可以减轻肾纤维化。因此,通过针对脂质代谢的关键调节因子来逆转肾脏中功能失调的脂质代谢是一种重要的策略。在这篇综述中,我们强调了改善肾纤维化的脂质代谢的潜在“可药性”,并提供了当前的临床前证据,以一些有代表性的可药物靶点和其他几种具有抗肾纤维化作用的代谢调节剂为例。然后,我们从脂质代谢的角度介绍了非编码 RNA 作为有前途的抗肾纤维化药物靶点的初步进展。最后,我们讨论了靶向肾脏脂质重编程的前景和局限性。

相似文献

1
Druggability of lipid metabolism modulation against renal fibrosis.
Acta Pharmacol Sin. 2022 Mar;43(3):505-519. doi: 10.1038/s41401-021-00660-1. Epub 2021 May 14.
6
ATF6α downregulation of PPARα promotes lipotoxicity-induced tubulointerstitial fibrosis.
Kidney Int. 2019 Mar;95(3):577-589. doi: 10.1016/j.kint.2018.09.023. Epub 2019 Jan 11.
7
Advances in energy metabolism in renal fibrosis.
Life Sci. 2023 Jan 1;312:121033. doi: 10.1016/j.lfs.2022.121033. Epub 2022 Oct 19.
8
CD36 in chronic kidney disease: novel insights and therapeutic opportunities.
Nat Rev Nephrol. 2017 Dec;13(12):769-781. doi: 10.1038/nrneph.2017.126. Epub 2017 Sep 18.
9
The evolving understanding of the contribution of lipid metabolism to diabetic kidney disease.
Curr Diab Rep. 2015 Jul;15(7):40. doi: 10.1007/s11892-015-0611-8.

引用本文的文献

1
MicroRNA‑21: A potential therapeutic target in lung cancer (Review).
Int J Oncol. 2025 Aug;67(2). doi: 10.3892/ijo.2025.5773. Epub 2025 Jul 11.
2
Traditional Chinese Medicine targeting the TGF-β/Smad signaling pathway as a potential therapeutic strategy for renal fibrosis.
Front Pharmacol. 2025 May 20;16:1513329. doi: 10.3389/fphar.2025.1513329. eCollection 2025.
3
4
Unraveling Ferroptosis: A New Frontier in Combating Renal Fibrosis and CKD Progression.
Biology (Basel). 2024 Dec 27;14(1):12. doi: 10.3390/biology14010012.
5
Research progress in anti-renal fibrosis drugs.
Zhong Nan Da Xue Xue Bao Yi Xue Ban. 2024 Aug 28;49(8):1353-1362. doi: 10.11817/j.issn.1672-7347.2024.240284.
6
PPARs: modulating lipotoxicity and thus inhibiting fibrosis.
Hormones (Athens). 2025 Mar;24(1):85-97. doi: 10.1007/s42000-024-00612-4. Epub 2024 Nov 6.
9
KCNJ16-depleted kidney organoids recapitulate tubulopathy and lipid recovery upon statins treatment.
Stem Cell Res Ther. 2024 Aug 26;15(1):268. doi: 10.1186/s13287-024-03881-3.
10
Lipid homeostasis in diabetic kidney disease.
Int J Biol Sci. 2024 Jul 2;20(10):3710-3724. doi: 10.7150/ijbs.95216. eCollection 2024.

本文引用的文献

1
Metabolic regulation of dermal fibroblasts contributes to skin extracellular matrix homeostasis and fibrosis.
Nat Metab. 2019 Jan;1(1):147-157. doi: 10.1038/s42255-018-0008-5. Epub 2019 Jan 7.
2
Myofibroblasts and Fibrosis: Mitochondrial and Metabolic Control of Cellular Differentiation.
Circ Res. 2020 Jul 17;127(3):427-447. doi: 10.1161/CIRCRESAHA.120.316958. Epub 2020 Jul 16.
3
Circular RNA in renal diseases.
J Cell Mol Med. 2020 Jun;24(12):6523-6533. doi: 10.1111/jcmm.15295. Epub 2020 Apr 25.
4
Circular RNA SAMD4A controls adipogenesis in obesity through the miR-138-5p/EZH2 axis.
Theranostics. 2020 Mar 26;10(10):4705-4719. doi: 10.7150/thno.42417. eCollection 2020.
5
Recent Insights Into SREBP as a Direct Mediator of Kidney Fibrosis via Lipid-Independent Pathways.
Front Pharmacol. 2020 Mar 17;11:265. doi: 10.3389/fphar.2020.00265. eCollection 2020.
8
New Insights on the Role of Lipid Metabolism in the Metabolic Reprogramming of Macrophages.
Front Immunol. 2020 Jan 10;10:2993. doi: 10.3389/fimmu.2019.02993. eCollection 2019.
9
MiR-9-5p protects from kidney fibrosis by metabolic reprogramming.
FASEB J. 2020 Jan;34(1):410-431. doi: 10.1096/fj.201901599RR. Epub 2019 Nov 22.
10
Vaccine Against PCSK9 Improved Renal Fibrosis by Regulating Fatty Acid β-Oxidation.
J Am Heart Assoc. 2020 Jan 7;9(1):e014358. doi: 10.1161/JAHA.119.014358. Epub 2019 Dec 24.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验