Suppr超能文献

全3D打印的一次性纸质超级电容器。

Fully 3D Printed and Disposable Paper Supercapacitors.

作者信息

Aeby Xavier, Poulin Alexandre, Siqueira Gilberto, Hausmann Michael K, Nyström Gustav

机构信息

EMPA, Swiss Federal Laboratories for Materials Science and Technology, Cellulose and Wood Materials Laboratory, Dübendorf, 8600, Switzerland.

ETH Zurich, Department of Health Sciences and Technology, Zurich, 8092, Switzerland.

出版信息

Adv Mater. 2021 Jul;33(26):e2101328. doi: 10.1002/adma.202101328. Epub 2021 May 14.

Abstract

With the development of the internet-of-things for applications such as wearables and packaging, a new class of electronics is emerging, characterized by the sheer number of forecast units and their short service-life. Projected to reach 27 billion units in 2021, connected devices are generating an exponentially increasing amount of electronic waste (e-waste). Fueled by the growing e-waste problem, the field of sustainable electronics is attracting significant interest. Today, standard energy-storage technologies such as lithium-ion or alkaline batteries still power most of smart devices. While they provide good performance, the nonrenewable and toxic materials require dedicated collection and recycling processes. Moreover, their standardized form factor and performance specifications limit the designs of smart devices. Here, exclusively disposable materials are used to fully print nontoxic supercapacitors maintaining a high capacitance of 25.6 F g active material at an operating voltage up to 1.2 V. The presented combination of digital material assembly, stable high-performance operation, and nontoxicity has the potential to open new avenues within sustainable electronics and applications such as environmental sensing, e-textiles, and healthcare.

摘要

随着物联网在可穿戴设备和包装等应用领域的发展,一类新型电子产品正在兴起,其特点是预计生产数量庞大且使用寿命短。预计到2021年,联网设备数量将达到270亿台,由此产生的电子垃圾(e-waste)数量呈指数级增长。在日益严重的电子垃圾问题推动下,可持续电子领域正引起广泛关注。如今,锂离子或碱性电池等标准储能技术仍为大多数智能设备提供动力。虽然它们性能良好,但不可再生和有毒材料需要专门的收集和回收处理。此外,它们标准化的外形尺寸和性能规格限制了智能设备的设计。在此,完全采用一次性材料来全印刷无毒超级电容器,在高达1.2V的工作电压下,活性材料的比电容保持在25.6F/g。所展示的数字材料组装、稳定的高性能运行和无毒特性的结合,有可能为可持续电子及环境传感、电子纺织品和医疗保健等应用开辟新途径。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验