Suppr超能文献

甲基诱导的极化作用破坏了N-甲基化赖氨酸的非共价相互作用。

Methyl-Induced Polarization Destabilizes the Noncovalent Interactions of N-Methylated Lysines.

作者信息

Rahman Sanim, Wineman-Fisher Vered, Nagy Péter R, Al-Hamdani Yasmine, Tkatchenko Alexandre, Varma Sameer

机构信息

Department of Cell Biology, Microbiology and Molecular Biology, University of South Florida, 4202 E. Fowler Ave., Tampa, FL, 33620, USA.

Current Address: Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.

出版信息

Chemistry. 2021 Jul 26;27(42):11005-11014. doi: 10.1002/chem.202100644. Epub 2021 Jun 17.

Abstract

Lysine methylation can modify noncovalent interactions by altering lysine's hydrophobicity as well as its electronic structure. Although the ramifications of the former are documented, the effects of the latter remain largely unknown. Understanding the electronic structure is important for determining how biological methylation modulates protein-protein binding, and the impact of artificial methylation experiments in which methylated lysines are used as spectroscopic probes and protein crystallization facilitators. The benchmarked first-principles calculations undertaken here reveal that methyl-induced polarization weakens the electrostatic attraction of amines with protein functional groups - salt bridges, hydrogen bonds and cation-π interactions weaken by as much as 10.3, 7.9 and 3.5 kT, respectively. Multipole analysis shows that weakened electrostatics is due to the altered inductive effects, which overcome increased attraction from methyl-enhanced polarizability and dispersion. Due to their fundamental nature, these effects are expected to be present in many cases. A survey of methylated lysines in protein structures reveals several cases in which methyl-induced polarization is the primary driver of altered noncovalent interactions; in these cases, destabilizations are found to be in the 0.6-4.7 kT range. The clearest case of where methyl-induced polarization plays a dominant role in regulating biological function is that of the PHD1-PHD2 domain, which recognizes lysine-methylated states on histones. These results broaden our understanding of how methylation modulates noncovalent interactions.

摘要

赖氨酸甲基化可通过改变赖氨酸的疏水性及其电子结构来修饰非共价相互作用。尽管前者的影响已有文献记载,但后者的影响在很大程度上仍不为人知。了解电子结构对于确定生物甲基化如何调节蛋白质-蛋白质结合,以及使用甲基化赖氨酸作为光谱探针和蛋白质结晶促进剂的人工甲基化实验的影响非常重要。本文进行的基准第一性原理计算表明,甲基诱导的极化削弱了胺与蛋白质官能团之间的静电吸引力——盐桥、氢键和阳离子-π相互作用分别减弱了多达10.3、7.9和3.5 kT。多极分析表明,静电作用减弱是由于诱导效应的改变,这种改变克服了甲基增强的极化率和色散增加所带来的吸引力增强。由于其基本性质,预计这些效应在许多情况下都会存在。对蛋白质结构中甲基化赖氨酸的调查揭示了几个案例,其中甲基诱导的极化是改变非共价相互作用的主要驱动力;在这些案例中,发现去稳定化作用在0.6-4.7 kT范围内。甲基诱导的极化在调节生物学功能中起主导作用的最明显例子是PHD1-PHD2结构域,它识别组蛋白上的赖氨酸甲基化状态。这些结果拓宽了我们对甲基化如何调节非共价相互作用的理解。

相似文献

1
Methyl-Induced Polarization Destabilizes the Noncovalent Interactions of N-Methylated Lysines.
Chemistry. 2021 Jul 26;27(42):11005-11014. doi: 10.1002/chem.202100644. Epub 2021 Jun 17.
2
The cation-π interaction.
Acc Chem Res. 2013 Apr 16;46(4):885-93. doi: 10.1021/ar300265y. Epub 2012 Dec 7.
3
Predictive QM/MM Modeling of Modulations in Protein-Protein Binding by Lysine Methylation.
J Mol Biol. 2021 Feb 5;433(3):166745. doi: 10.1016/j.jmb.2020.166745. Epub 2020 Dec 9.
5
Energy component analysis of π interactions.
Acc Chem Res. 2013 Apr 16;46(4):1020-8. doi: 10.1021/ar3001124. Epub 2012 Sep 28.
6
Recognition of histone H3 lysine-4 methylation by the double tudor domain of JMJD2A.
Science. 2006 May 5;312(5774):748-51. doi: 10.1126/science.1125162. Epub 2006 Apr 6.
7
Principles of Cation-π Interactions for Engineering Mussel-Inspired Functional Materials.
Acc Chem Res. 2022 Apr 19;55(8):1171-1182. doi: 10.1021/acs.accounts.2c00068. Epub 2022 Mar 28.
8
Synthetic Receptors for the Recognition and Discrimination of Post-Translationally Methylated Lysines.
Chembiochem. 2018 Nov 16;19(22):2324-2340. doi: 10.1002/cbic.201800398. Epub 2018 Oct 15.

引用本文的文献

2
Polarizable AMOEBA Model for Simulating Mg·Protein·Nucleotide Complexes.
J Chem Inf Model. 2024 Jan 22;64(2):378-392. doi: 10.1021/acs.jcim.3c01513. Epub 2023 Dec 5.
3
Linear-Scaling Local Natural Orbital CCSD(T) Approach for Open-Shell Systems: Algorithms, Benchmarks, and Large-Scale Applications.
J Chem Theory Comput. 2023 Nov 28;19(22):8166-8188. doi: 10.1021/acs.jctc.3c00881. Epub 2023 Nov 3.
4
Inclusion of High-Field Target Data in AMOEBA's Calibration Improves Predictions of Protein-Ion Interactions.
J Chem Inf Model. 2022 Oct 10;62(19):4713-4726. doi: 10.1021/acs.jcim.2c00758. Epub 2022 Sep 29.
5
Reading and erasing of the phosphonium analogue of trimethyllysine by epigenetic proteins.
Commun Chem. 2022 Mar 7;5(1). doi: 10.1038/s42004-022-00640-4. eCollection 2022 Dec.

本文引用的文献

3
Predictive QM/MM Modeling of Modulations in Protein-Protein Binding by Lysine Methylation.
J Mol Biol. 2021 Feb 5;433(3):166745. doi: 10.1016/j.jmb.2020.166745. Epub 2020 Dec 9.
4
Transferable interactions of Li and Mg ions in polarizable models.
J Chem Phys. 2020 Sep 14;153(10):104113. doi: 10.1063/5.0022060.
6
The MRCC program system: Accurate quantum chemistry from water to proteins.
J Chem Phys. 2020 Feb 21;152(7):074107. doi: 10.1063/1.5142048.
7
Lysine Methylation Regulators Moonlighting outside the Epigenome.
Mol Cell. 2019 Sep 19;75(6):1092-1101. doi: 10.1016/j.molcel.2019.08.026.
8
Approaching the Basis Set Limit of CCSD(T) Energies for Large Molecules with Local Natural Orbital Coupled-Cluster Methods.
J Chem Theory Comput. 2019 Oct 8;15(10):5275-5298. doi: 10.1021/acs.jctc.9b00511. Epub 2019 Sep 11.
9
Lysine methylation of transcription factors in cancer.
Cell Death Dis. 2019 Mar 29;10(4):290. doi: 10.1038/s41419-019-1524-2.
10
Ion-Hydroxyl Interactions: From High-Level Quantum Benchmarks to Transferable Polarizable Force Fields.
J Chem Theory Comput. 2019 Apr 9;15(4):2444-2453. doi: 10.1021/acs.jctc.8b01198. Epub 2019 Mar 13.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验