Suppr超能文献

寻找纤维化问题的解决方案:了解超级再生脊椎动物用于对抗瘢痕形成的先天机制。

Finding Solutions for Fibrosis: Understanding the Innate Mechanisms Used by Super-Regenerator Vertebrates to Combat Scarring.

机构信息

Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, 02138, USA.

The Harvard Stem Cell Institute, Cambridge, MA, 02138, USA.

出版信息

Adv Sci (Weinh). 2021 Aug;8(15):e2100407. doi: 10.1002/advs.202100407. Epub 2021 May 24.

Abstract

Soft tissue fibrosis and cutaneous scarring represent massive clinical burdens to millions of patients per year and the therapeutic options available are currently quite limited. Despite what is known about the process of fibrosis in mammals, novel approaches for combating fibrosis and scarring are necessary. It is hypothesized that scarring has evolved as a solution to maximize healing speed to reduce fluid loss and infection. This hypothesis, however, is complicated by regenerative animals, which have arguably the most remarkable healing abilities and are capable of scar-free healing. This review explores the differences observed between adult mammalian healing that typically results in fibrosis versus healing in regenerative animals that heal scarlessly. Each stage of wound healing is surveyed in depth from the perspective of many regenerative and fibrotic healers so as to identify the most important molecular and physiological variances along the way to disparate injury repair outcomes. Understanding how these powerful model systems accomplish the feat of scar-free healing may provide critical therapeutic approaches to the treatment or prevention of fibrosis.

摘要

软组织纤维化和皮肤瘢痕形成每年给数百万患者带来巨大的临床负担,而目前可用的治疗选择相当有限。尽管人们已经了解了哺乳动物纤维化的过程,但仍需要寻找新的方法来对抗纤维化和瘢痕形成。有人假设,瘢痕形成是为了最大限度地提高愈合速度以减少液体流失和感染而进化出来的。然而,这一假设因再生动物而变得复杂,再生动物拥有最显著的愈合能力,能够实现无瘢痕愈合。本综述探讨了成年哺乳动物愈合通常导致纤维化与再生动物无瘢痕愈合之间观察到的差异。从许多再生和纤维化愈合者的角度深入调查了伤口愈合的每个阶段,以确定在不同的损伤修复结果过程中最重要的分子和生理差异。了解这些强大的模型系统如何实现无瘢痕愈合的壮举,可能为纤维化的治疗或预防提供关键的治疗方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d23d/8336523/c534f8460b34/ADVS-8-2100407-g007.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验