Suppr超能文献

解决异构数据的有序回归问题:稀疏和深度多任务学习方法。

Tackling Ordinal Regression Problem for Heterogeneous Data: Sparse and Deep Multi-Task Learning Approaches.

作者信息

Wang Lu, Zhu Dongxiao

机构信息

Dept. of Computer Science, Wayne State University, Detroit, MI 48202.

出版信息

Data Min Knowl Discov. 2021 May;35(3):1134-1161. doi: 10.1007/s10618-021-00746-8. Epub 2021 Mar 23.

Abstract

Many real-world datasets are labeled with natural orders, i.e., ordinal labels. Ordinal regression is a method to predict ordinal labels that finds a wide range of applications in data-rich domains, such as natural, health and social sciences. Most existing ordinal regression approaches work well for independent and identically distributed (IID) instances via formulating a single ordinal regression task. However, for heterogeneous non-IID instances with well-defined local geometric structures, e.g., subpopulation groups, multi-task learning (MTL) provides a promising framework to encode task (subgroup) relatedness, bridge data from all tasks, and simultaneously learn multiple related tasks in efforts to improve generalization performance. Even though MTL methods have been extensively studied, there is barely existing work investigating MTL for heterogeneous data with ordinal labels. We tackle this important problem via sparse and deep multi-task approaches. Specifically, we develop a regularized multi-task ordinal regression (MTOR) model for smaller datasets and a deep neural networks based MTOR model for large-scale datasets. We evaluate the performance using three real-world healthcare datasets with applications to multi-stage disease progression diagnosis. Our experiments indicate that the proposed MTOR models markedly improve the prediction performance comparing with single-task ordinal regression models.

摘要

许多现实世界的数据集都带有自然顺序标签,即序数标签。序数回归是一种预测序数标签的方法,在数据丰富的领域,如自然科学、健康科学和社会科学中有着广泛的应用。大多数现有的序数回归方法通过制定单个序数回归任务,对独立同分布(IID)实例效果良好。然而,对于具有明确局部几何结构的异构非IID实例,例如亚群体组,多任务学习(MTL)提供了一个很有前景的框架,用于编码任务(子组)相关性、连接所有任务的数据,并同时学习多个相关任务以提高泛化性能。尽管MTL方法已经得到了广泛研究,但几乎没有现有工作研究具有序数标签的异构数据的MTL。我们通过稀疏和深度多任务方法解决这个重要问题。具体来说,我们为较小的数据集开发了一个正则化多任务序数回归(MTOR)模型,为大规模数据集开发了一个基于深度神经网络的MTOR模型。我们使用三个现实世界的医疗保健数据集评估性能,并将其应用于多阶段疾病进展诊断。我们的实验表明,与单任务序数回归模型相比,所提出的MTOR模型显著提高了预测性能。

相似文献

1
Tackling Ordinal Regression Problem for Heterogeneous Data: Sparse and Deep Multi-Task Learning Approaches.
Data Min Knowl Discov. 2021 May;35(3):1134-1161. doi: 10.1007/s10618-021-00746-8. Epub 2021 Mar 23.
2
Integrating multi-task and cost-sensitive learning for predicting mortality risk of chronic diseases in the elderly using real-world data.
Int J Med Inform. 2024 Nov;191:105567. doi: 10.1016/j.ijmedinf.2024.105567. Epub 2024 Jul 25.
3
Multi-task learning for the prediction of wind power ramp events with deep neural networks.
Neural Netw. 2020 Mar;123:401-411. doi: 10.1016/j.neunet.2019.12.017. Epub 2020 Jan 7.
4
Learning Ordinal-Hierarchical Constraints for Deep Learning Classifiers.
IEEE Trans Neural Netw Learn Syst. 2025 Mar;36(3):4765-4778. doi: 10.1109/TNNLS.2024.3360641. Epub 2025 Feb 28.
5
Model-Protected Multi-Task Learning.
IEEE Trans Pattern Anal Mach Intell. 2022 Feb;44(2):1002-1019. doi: 10.1109/TPAMI.2020.3015859. Epub 2022 Jan 7.
7
A multi-modal fusion framework based on multi-task correlation learning for cancer prognosis prediction.
Artif Intell Med. 2022 Apr;126:102260. doi: 10.1016/j.artmed.2022.102260. Epub 2022 Feb 24.
8
Ordinal convolutional neural networks for predicting RDoC positive valence psychiatric symptom severity scores.
J Biomed Inform. 2017 Nov;75S:S85-S93. doi: 10.1016/j.jbi.2017.05.008. Epub 2017 May 12.
9
Incremental sparse Bayesian ordinal regression.
Neural Netw. 2018 Oct;106:294-302. doi: 10.1016/j.neunet.2018.07.015. Epub 2018 Aug 2.

引用本文的文献

1
AutoScore-Ordinal: an interpretable machine learning framework for generating scoring models for ordinal outcomes.
BMC Med Res Methodol. 2022 Nov 4;22(1):286. doi: 10.1186/s12874-022-01770-y.
2
Representation Learning for Fine-Grained Change Detection.
Sensors (Basel). 2021 Jun 30;21(13):4486. doi: 10.3390/s21134486.

本文引用的文献

1
Deep Ordinal Regression Network for Monocular Depth Estimation.
Proc IEEE Comput Soc Conf Comput Vis Pattern Recognit. 2018 Jun;2018:2002-2011. doi: 10.1109/CVPR.2018.00214. Epub 2018 Dec 17.
2
Multi-stage Biomarker Models for Progression Estimation in Alzheimer's Disease.
Inf Process Med Imaging. 2015;24:387-98. doi: 10.1007/978-3-319-19992-4_30.
3
Obesity and breast cancer: not only a risk factor of the disease.
Curr Treat Options Oncol. 2015 May;16(5):22. doi: 10.1007/s11864-015-0341-9.
5
Clustered Multi-Task Learning Via Alternating Structure Optimization.
Adv Neural Inf Process Syst. 2011;2011:702-710.
6
Incremental Support Vector Learning for Ordinal Regression.
IEEE Trans Neural Netw Learn Syst. 2015 Jul;26(7):1403-16. doi: 10.1109/TNNLS.2014.2342533. Epub 2014 Aug 12.
7
Age-related differences in presentation and course of inflammatory bowel disease: an update on the population-based literature.
J Crohns Colitis. 2014 Nov;8(11):1351-61. doi: 10.1016/j.crohns.2014.05.006. Epub 2014 Jun 18.
9
Redefining meaningful age groups in the context of disease.
Age (Dordr). 2013 Dec;35(6):2357-66. doi: 10.1007/s11357-013-9510-6. Epub 2013 Jan 27.
10
Forecasting the global burden of Alzheimer's disease.
Alzheimers Dement. 2007 Jul;3(3):186-91. doi: 10.1016/j.jalz.2007.04.381.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验