Suppr超能文献

癌细胞与免疫细胞的相互作用促使胶质母细胞瘤向间充质样状态转变。

Interactions between cancer cells and immune cells drive transitions to mesenchymal-like states in glioblastoma.

机构信息

Department of Pathology and Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA; Klarman Cell Observatory, Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA; Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA; Laboratory of Genetics, Salk Institute for Biological Studies, La Jolla, CA 92037, USA.

Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot 761001, Israel.

出版信息

Cancer Cell. 2021 Jun 14;39(6):779-792.e11. doi: 10.1016/j.ccell.2021.05.002. Epub 2021 Jun 3.

Abstract

The mesenchymal subtype of glioblastoma is thought to be determined by both cancer cell-intrinsic alterations and extrinsic cellular interactions, but remains poorly understood. Here, we dissect glioblastoma-to-microenvironment interactions by single-cell RNA sequencing analysis of human tumors and model systems, combined with functional experiments. We demonstrate that macrophages induce a transition of glioblastoma cells into mesenchymal-like (MES-like) states. This effect is mediated, both in vitro and in vivo, by macrophage-derived oncostatin M (OSM) that interacts with its receptors (OSMR or LIFR) in complex with GP130 on glioblastoma cells and activates STAT3. We show that MES-like glioblastoma states are also associated with increased expression of a mesenchymal program in macrophages and with increased cytotoxicity of T cells, highlighting extensive alterations of the immune microenvironment with potential therapeutic implications.

摘要

胶质母细胞瘤的间质亚型被认为是由癌细胞内在改变和外在细胞相互作用共同决定的,但目前仍知之甚少。在这里,我们通过对人类肿瘤和模型系统的单细胞 RNA 测序分析,结合功能实验,剖析了胶质母细胞瘤与微环境的相互作用。我们证明了巨噬细胞诱导胶质母细胞瘤细胞向间充质样(MES 样)状态转变。这种效应在体外和体内都是由巨噬细胞衍生的肿瘤坏死因子-α(OSM)介导的,它与胶质母细胞瘤细胞上的 GP130 与受体(OSMR 或 LIFR)形成复合物,并激活 STAT3。我们表明,MES 样胶质母细胞瘤状态也与巨噬细胞中间充质程序的表达增加以及 T 细胞的细胞毒性增加有关,这突出了免疫微环境的广泛改变,具有潜在的治疗意义。

相似文献

1
Interactions between cancer cells and immune cells drive transitions to mesenchymal-like states in glioblastoma.
Cancer Cell. 2021 Jun 14;39(6):779-792.e11. doi: 10.1016/j.ccell.2021.05.002. Epub 2021 Jun 3.
3
Annexin A2-STAT3-Oncostatin M receptor axis drives phenotypic and mesenchymal changes in glioblastoma.
Acta Neuropathol Commun. 2020 Apr 5;8(1):42. doi: 10.1186/s40478-020-00916-7.
4
The AB loop and D-helix in binding site III of human Oncostatin M (OSM) are required for OSM receptor activation.
J Biol Chem. 2018 May 4;293(18):7017-7029. doi: 10.1074/jbc.RA118.001920. Epub 2018 Mar 6.
5
Oncostatin M Receptor-Targeted Antibodies Suppress STAT3 Signaling and Inhibit Ovarian Cancer Growth.
Cancer Res. 2021 Oct 15;81(20):5336-5352. doi: 10.1158/0008-5472.CAN-21-0483. Epub 2021 Aug 11.
6
The AB loop of oncostatin M (OSM) determines species-specific signaling in humans and mice.
J Biol Chem. 2018 Dec 28;293(52):20181-20199. doi: 10.1074/jbc.RA118.004375. Epub 2018 Oct 29.
8
Oncostatin M receptor, positively regulated by SP1, promotes gastric cancer growth and metastasis upon treatment with Oncostatin M.
Gastric Cancer. 2019 Sep;22(5):955-966. doi: 10.1007/s10120-019-00934-y. Epub 2019 Feb 18.
10
β-Catenin mediated TAM phenotype promotes pancreatic cancer metastasis via the OSM/STAT3/LOXL2 axis.
Neoplasia. 2025 Feb;60:101096. doi: 10.1016/j.neo.2024.101096. Epub 2024 Dec 30.

引用本文的文献

1
CAR-T cell therapy for glioblastoma: advances, challenges, and future directions.
Ann Med Surg (Lond). 2025 Jul 18;87(9):5743-5756. doi: 10.1097/MS9.0000000000003607. eCollection 2025 Sep.
2
TRAILblazing Astrocytes: Glioblastoma's Covert Immunosuppressive Agents.
Neurosci Bull. 2025 Aug 28. doi: 10.1007/s12264-025-01495-0.
3
The Role of Pyk2 Kinase in Glioblastoma Progression and Therapeutic Targeting.
Cancers (Basel). 2025 Aug 9;17(16):2611. doi: 10.3390/cancers17162611.
5
An engineered glioblastoma model yields macrophage-secreted drivers of invasion.
JCI Insight. 2025 Aug 22;10(16). doi: 10.1172/jci.insight.181903.
8
Axonal injury is a targetable driver of glioblastoma progression.
Nature. 2025 Aug 20. doi: 10.1038/s41586-025-09411-2.
9
New Insights into Monocyte-Derived Macrophages in Glioblastoma.
Research (Wash D C). 2025 Aug 12;8:0836. doi: 10.34133/research.0836. eCollection 2025.

本文引用的文献

1
Inhibitory CD161 receptor identified in glioma-infiltrating T cells by single-cell analysis.
Cell. 2021 Mar 4;184(5):1281-1298.e26. doi: 10.1016/j.cell.2021.01.022. Epub 2021 Feb 15.
2
Pan-cancer single-cell RNA-seq identifies recurring programs of cellular heterogeneity.
Nat Genet. 2020 Nov;52(11):1208-1218. doi: 10.1038/s41588-020-00726-6. Epub 2020 Oct 30.
3
Immune suppression in gliomas.
J Neurooncol. 2021 Jan;151(1):3-12. doi: 10.1007/s11060-020-03483-y. Epub 2020 Jun 15.
5
Cross-Species Single-Cell Analysis Reveals Divergence of the Primate Microglia Program.
Cell. 2019 Dec 12;179(7):1609-1622.e16. doi: 10.1016/j.cell.2019.11.010.
6
Fast, sensitive and accurate integration of single-cell data with Harmony.
Nat Methods. 2019 Dec;16(12):1289-1296. doi: 10.1038/s41592-019-0619-0. Epub 2019 Nov 18.
7
Spatial transcriptome profiling by MERFISH reveals subcellular RNA compartmentalization and cell cycle-dependent gene expression.
Proc Natl Acad Sci U S A. 2019 Sep 24;116(39):19490-19499. doi: 10.1073/pnas.1912459116. Epub 2019 Sep 9.
8
An Integrative Model of Cellular States, Plasticity, and Genetics for Glioblastoma.
Cell. 2019 Aug 8;178(4):835-849.e21. doi: 10.1016/j.cell.2019.06.024. Epub 2019 Jul 18.
9
Modeling Gliomas Using Two Recombinases.
Cancer Res. 2019 Aug 1;79(15):3983-3991. doi: 10.1158/0008-5472.CAN-19-0717. Epub 2019 Jul 17.
10
When less is more: Gaining power through gene rearrangement of amplified .
Oncotarget. 2019 Mar 15;10(22):2116-2117. doi: 10.18632/oncotarget.26786.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验