Suppr超能文献

TET2 可防止移植血管病中的血管平滑肌细胞凋亡和内膜增厚。

TET2 Protects Against Vascular Smooth Muscle Cell Apoptosis and Intimal Thickening in Transplant Vasculopathy.

机构信息

Departments of Medicine (Cardiovascular Medicine) (A.C.O., Y.X., R.C., A.J.S., M.D., J.H., K.A.M.), Yale University School of Medicine, New Haven, CT.

Pharmacology (A.C.O., Y.X., R.C., A.J.S., M.D.), Yale University School of Medicine, New Haven, CT.

出版信息

Circulation. 2021 Aug 10;144(6):455-470. doi: 10.1161/CIRCULATIONAHA.120.050553. Epub 2021 Jun 11.

Abstract

BACKGROUND

Coronary allograft vasculopathy (CAV) is a devastating sequela of heart transplant in which arterial intimal thickening limits coronary blood flow. There are currently no targeted therapies to prevent or reduce this pathology that leads to transplant failure. Vascular smooth muscle cell (VSMC) phenotypic plasticity is critical in CAV neointima formation. TET2 (TET methylcytosine dioxygenase 2) is an important epigenetic regulator of VSMC phenotype, but the role of TET2 in the progression of CAV is unknown.

METHODS

We assessed TET2 expression and activity in human CAV and renal transplant samples. We also used the sex-mismatched murine aortic graft model of graft arteriopathy (GA) in wild-type and inducible smooth muscle-specific knockout mice; and in vitro studies in murine and human VSMCs using knockdown, overexpression, and transcriptomic approaches to assess the role of TET2 in VSMC responses to IFNγ (interferon γ), a cytokine elaborated by T cells that drives CAV progression.

RESULTS

In the present study, we found that TET2 expression and activity are negatively regulated in human CAV and renal transplant samples and in the murine aortic graft model of GA. IFNγ was sufficient to repress TET2 and induce an activated VSMC phenotype in vitro. TET2 depletion mimicked the effects of IFNγ, and TET2 overexpression rescued IFNγ-induced dedifferentiation. VSMC-specific TET2 depletion in aortic grafts, and in the femoral wire restenosis model, resulted in increased VSMC apoptosis and medial thinning. In GA, this apoptosis was tightly correlated with proliferation. In vitro, TET2-deficient VSMCs undergo apoptosis more readily in response to IFNγ and expressed a signature of increased susceptibility to extrinsic apoptotic signaling. Enhancing TET2 enzymatic activity with high-dose ascorbic acid rescued the effect of GA-induced VSMC apoptosis and intimal thickening in a TET2-dependent manner.

CONCLUSIONS

TET2 is repressed in CAV and GA, likely mediated by IFNγ. TET2 serves to protect VSMCs from apoptosis in the context of transplant vasculopathy or IFNγ stimulation. Promoting TET2 activity in vivo with systemic ascorbic acid reduces VSMC apoptosis and intimal thickening. These data suggest that promoting TET2 activity in CAV may be an effective strategy for limiting CAV progression.

摘要

背景

冠状动脉移植血管病(CAV)是心脏移植后的一种破坏性后遗症,其中动脉内膜增厚限制了冠状动脉血流。目前尚无针对这种导致移植失败的病理学的靶向治疗方法。血管平滑肌细胞(VSMC)表型可塑性在 CAV 新生内膜形成中至关重要。TET2(TET 甲基胞嘧啶双加氧酶 2)是 VSMC 表型的重要表观遗传调节剂,但 TET2 在 CAV 进展中的作用尚不清楚。

方法

我们评估了人 CAV 和肾移植样本中 TET2 的表达和活性。我们还使用了性匹配的小鼠主动脉移植物模型来研究移植物动脉病(GA),该模型在野生型和诱导型平滑肌特异性 敲除小鼠中使用;以及在体外使用小鼠和人 VSMCs 的基因敲低、过表达和转录组学方法来评估 TET2 在 VSMC 对 IFNγ(干扰素 γ)反应中的作用,IFNγ 是一种由 T 细胞分泌的细胞因子,可驱动 CAV 进展。

结果

在本研究中,我们发现 TET2 的表达和活性在人 CAV 和肾移植样本以及小鼠主动脉移植物模型中受到负调控。IFNγ 足以抑制 TET2 并诱导体外激活的 VSMC 表型。TET2 耗竭模拟了 IFNγ 的作用,而 TET2 过表达挽救了 IFNγ 诱导的去分化。在主动脉移植物和股动脉钢丝再狭窄模型中,VSMC 特异性 TET2 耗竭导致 VSMC 凋亡和中膜变薄增加。在 GA 中,这种凋亡与增殖密切相关。在体外,TET2 缺陷的 VSMCs 更容易对 IFNγ 产生凋亡反应,并表达对外源性凋亡信号更易感性的特征。用高剂量抗坏血酸增强 TET2 酶活性以 TET2 依赖的方式挽救了 GA 诱导的 VSMC 凋亡和内膜增厚的作用。

结论

TET2 在 CAV 和 GA 中受到抑制,可能由 IFNγ 介导。TET2 有助于保护 VSMCs 在移植血管病或 IFNγ 刺激的情况下免于凋亡。用系统抗坏血酸促进体内 TET2 活性可减少 VSMC 凋亡和内膜增厚。这些数据表明,在 CAV 中促进 TET2 活性可能是限制 CAV 进展的有效策略。

相似文献

1
TET2 Protects Against Vascular Smooth Muscle Cell Apoptosis and Intimal Thickening in Transplant Vasculopathy.
Circulation. 2021 Aug 10;144(6):455-470. doi: 10.1161/CIRCULATIONAHA.120.050553. Epub 2021 Jun 11.
3
Histone Acetyltransferases p300 and CBP Coordinate Distinct Chromatin Remodeling Programs in Vascular Smooth Muscle Plasticity.
Circulation. 2022 Jun 7;145(23):1720-1737. doi: 10.1161/CIRCULATIONAHA.121.057599. Epub 2022 May 3.
4
Role of ascorbic acid in cardiac allograft vasculopathy.
Clin Transplant. 2023 Dec;37(12):e15153. doi: 10.1111/ctr.15153. Epub 2023 Oct 4.
5
AIP1 prevents graft arteriosclerosis by inhibiting interferon-γ-dependent smooth muscle cell proliferation and intimal expansion.
Circ Res. 2011 Aug 5;109(4):418-27. doi: 10.1161/CIRCRESAHA.111.248245. Epub 2011 Jun 23.
6
Wnt2 and WISP-1/CCN4 Induce Intimal Thickening via Promotion of Smooth Muscle Cell Migration.
Arterioscler Thromb Vasc Biol. 2016 Jul;36(7):1417-24. doi: 10.1161/ATVBAHA.116.307626. Epub 2016 May 19.
7
Pyrogallol abates VSMC migration via modulation of Caveolin-1, matrix metalloproteinase and intima hyperplasia in carotid ligation mouse.
Environ Toxicol Pharmacol. 2016 Dec;48:63-75. doi: 10.1016/j.etap.2016.10.005. Epub 2016 Oct 15.
10
Salusin-β Promotes Vascular Smooth Muscle Cell Migration and Intimal Hyperplasia After Vascular Injury via ROS/NFκB/MMP-9 Pathway.
Antioxid Redox Signal. 2016 Jun 20;24(18):1045-57. doi: 10.1089/ars.2015.6475. Epub 2016 Apr 8.

引用本文的文献

1
METTL16 Contributes to Coronary Heart Disease by Inducing TET2 m6A Modification.
J Inflamm Res. 2025 May 27;18:6821-6830. doi: 10.2147/JIR.S487828. eCollection 2025.
2
The functional significance of vascular DNA hypermethylation in atherosclerosis: a historical perspective.
Front Pharmacol. 2025 Apr 15;16:1562674. doi: 10.3389/fphar.2025.1562674. eCollection 2025.
3
METTL14 promotes intimal hyperplasia through m6A-mediated control of vascular smooth muscle dedifferentiation genes.
JCI Insight. 2025 Apr 17;10(10). doi: 10.1172/jci.insight.184444. eCollection 2025 May 22.
4
5
CD34 PI16 fibroblast progenitors aggravate neointimal lesions of allograft arteries via CCL11/CCR3-PI3K/AKT pathway.
Theranostics. 2025 Jan 20;15(6):2523-2543. doi: 10.7150/thno.104650. eCollection 2025.
7
Correlation between the mechanism of arteriopathy in IgA nephropathy and blood stasis syndrome: A cohort study.
Open Med (Wars). 2024 Dec 9;19(1):20241042. doi: 10.1515/med-2024-1042. eCollection 2024.
10
A minor tweak in transplant surgery protocols alters the cellular landscape of the arterial wall during transplant vasculopathy.
Front Transplant. 2024 Apr 29;3:1260125. doi: 10.3389/frtra.2024.1260125. eCollection 2024.

本文引用的文献

1
TET family dioxygenases and the TET activator vitamin C in immune responses and cancer.
Blood. 2020 Sep 17;136(12):1394-1401. doi: 10.1182/blood.2019004158.
2
A Cell's Fate: An Overview of the Molecular Biology and Genetics of Apoptosis.
Int J Mol Sci. 2019 Aug 24;20(17):4133. doi: 10.3390/ijms20174133.
3
Tumor suppressor TET2 promotes cancer immunity and immunotherapy efficacy.
J Clin Invest. 2019 Jul 16;129(10):4316-4331. doi: 10.1172/JCI129317.
4
LncRNA-ANRIL promotes gastric cancer progression by enhancing NF-kB signaling.
Exp Biol Med (Maywood). 2019 Sep;244(12):953-959. doi: 10.1177/1535370219860207. Epub 2019 Jun 26.
5
The Evolving Roles of Macrophages in Organ Transplantation.
J Immunol Res. 2019 Apr 24;2019:5763430. doi: 10.1155/2019/5763430. eCollection 2019.
6
TET2 Function in Hematopoietic Malignancies, Immune Regulation, and DNA Repair.
Front Oncol. 2019 Apr 2;9:210. doi: 10.3389/fonc.2019.00210. eCollection 2019.
7
Ascorbic Acid in Cancer Treatment: Let the Phoenix Fly.
Cancer Cell. 2018 Nov 12;34(5):700-706. doi: 10.1016/j.ccell.2018.07.014. Epub 2018 Aug 30.
9
Influence of Vitamin C on Lymphocytes: An Overview.
Antioxidants (Basel). 2018 Mar 10;7(3):41. doi: 10.3390/antiox7030041.
10
Restoration of TET2 Function Blocks Aberrant Self-Renewal and Leukemia Progression.
Cell. 2017 Sep 7;170(6):1079-1095.e20. doi: 10.1016/j.cell.2017.07.032. Epub 2017 Aug 17.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验