Suppr超能文献

生产、纯化和供应 At:全球可及性的近期步骤。

Production, purification and availability of At: Near term steps towards global access.

机构信息

Department of Radiology, Duke University Medical Center, Durham, NC, USA.

Department of Radiology, Duke University Medical Center, Durham, NC, USA.

出版信息

Nucl Med Biol. 2021 Sep-Oct;100-101:12-23. doi: 10.1016/j.nucmedbio.2021.05.007. Epub 2021 Jun 10.

Abstract

The promising characteristics of the 7.2-h radiohalogen At have long been recognized; including having chemical properties suitable for labeling targeting vectors ranging from small organic molecules to proteins, and the emission of only one α-particle per decay, providing greater control over off-target effects. Unfortunately, the impact of At within the targeted α-particle therapy domain has been constrained by its limited availability. Paradoxically, the most commonly used production method - via the Bi(α,2n)At reaction - utilizes a widely available natural material (bismuth) as the target and straightforward cyclotron irradiation methodology. On the other hand, the most significant impediment to widespread At availability is the need for an accelerator capable of generating ≥28 MeV α-particles with sufficient beam intensities to make clinically relevant levels of At. In this review, current methodologies for the production and purification of At - both by the direct production route noted above and via a Rn generator system - will be discussed. The capabilities of cyclotrons that currently produce At will be summarized and the characteristics of other accelerators that could be utilized for this purpose will be described. Finally, the logistics of networks, both academic and commercial, for facilitating At distribution to locations remote from production sites will be addressed.

摘要

放射性卤素 At 具有 7.2 小时的半衰期,其特性十分有前景,长期以来一直受到关注。它的化学性质适合标记从小分子有机化合物到蛋白质的靶向载体,并且每次衰变只发射一个α粒子,这为控制脱靶效应提供了更大的自由度。不幸的是,由于 At 的供应量有限,其在靶向α粒子治疗领域的应用受到了限制。具有讽刺意味的是,最常用的生产方法——通过 Bi(α,2n)At 反应——利用广泛可用的天然材料(铋)作为靶材,并采用简单的回旋加速器辐照方法。另一方面,广泛获得 At 的最大障碍是需要一台能够产生 ≥28 MeV α-粒子的加速器,并且具有足够的束流强度,以达到临床相关的 At 水平。在这篇综述中,将讨论目前用于生产和纯化 At 的方法——包括上述直接生产途径和通过 Rn 发生器系统的方法。将总结目前生产 At 的回旋加速器的能力,并描述可用于此目的的其他加速器的特性。最后,将讨论促进远离生产地点的地点获得 At 的学术和商业网络的后勤问题。

相似文献

1
Production, purification and availability of At: Near term steps towards global access.
Nucl Med Biol. 2021 Sep-Oct;100-101:12-23. doi: 10.1016/j.nucmedbio.2021.05.007. Epub 2021 Jun 10.
2
Production of α-particle emitting ²¹¹At using 45 MeV α-beam.
Phys Med Biol. 2014 Jun 7;59(11):2849-60. doi: 10.1088/0031-9155/59/11/2849. Epub 2014 May 13.
3
Evaluation of an internal cyclotron target for the production of 211At via the 209Bi (alpha,2n)211 at reaction.
Appl Radiat Isot. 1996 Feb;47(2):135-43. doi: 10.1016/0969-8043(95)00285-5.
4
Astatine-211: production and availability.
Curr Radiopharm. 2011 Jul;4(3):177-85. doi: 10.2174/1874471011104030177.
5
Optimisation study of alpha-cyclotron production of At-211/Po-211g for high-LET metabolic radiotherapy purposes.
Appl Radiat Isot. 2005 Nov-Dec;63(5-6):621-31. doi: 10.1016/j.apradiso.2005.05.041. Epub 2005 Aug 2.
6
Preliminary production of 211At at the Texas A&M University Cyclotron Institute.
Health Phys. 2014 Jul;107(1):1-9. doi: 10.1097/HP.0000000000000042.
7
High-yield cyclotron production of Pb using a sealed Tl solid target.
Nucl Med Biol. 2023 Jan-Feb;116-117:108314. doi: 10.1016/j.nucmedbio.2023.108314. Epub 2023 Jan 13.
8
New method for production of Tb via Dy by irradiation of Gd by medium energy alpha particles.
Nucl Med Biol. 2022 Mar-Apr;106-107:52-61. doi: 10.1016/j.nucmedbio.2021.12.004. Epub 2021 Dec 30.
9
Development of a preclinical Rn/At generator system for targeted alpha therapy research with At.
Nucl Med Biol. 2017 May;48:31-35. doi: 10.1016/j.nucmedbio.2017.01.011. Epub 2017 Jan 29.

引用本文的文献

2
Radionuclide-Labeled Biomaterials: A Novel Strategy for Tumor-Targeted Therapy.
Biomimetics (Basel). 2025 Jun 11;10(6):394. doi: 10.3390/biomimetics10060394.
4
Current landscape and future directions of targeted-alpha-therapy for glioblastoma treatment.
Theranostics. 2025 Mar 31;15(11):4861-4889. doi: 10.7150/thno.106081. eCollection 2025.
5
Enhancing the Stability of At Radiopharmaceuticals: Insights from Ortho-Substituent Strategies.
ACS Med Chem Lett. 2025 Mar 20;16(4):504-507. doi: 10.1021/acsmedchemlett.5c00102. eCollection 2025 Apr 10.
6
Radiotheranostic landscape: A review of clinical and preclinical development.
Eur J Nucl Med Mol Imaging. 2025 Feb 1. doi: 10.1007/s00259-025-07103-7.
7
Astatine-211 and actinium-225: two promising nuclides in targeted alpha therapy.
Acta Biochim Biophys Sin (Shanghai). 2024 Nov 25;57(3):327-343. doi: 10.3724/abbs.2024206.
8
Astatine-211 radiolabelling chemistry: from basics to advanced biological applications.
EJNMMI Radiopharm Chem. 2024 Oct 4;9(1):69. doi: 10.1186/s41181-024-00298-4.
9
A proposed production method for astatinated (At-211) Trastuzumab for use in a Phase I clinical trial.
PLoS One. 2024 Sep 24;19(9):e0307543. doi: 10.1371/journal.pone.0307543. eCollection 2024.
10
The Different Strategies for the Radiolabeling of [At]-Astatinated Radiopharmaceuticals.
Pharmaceutics. 2024 May 30;16(6):738. doi: 10.3390/pharmaceutics16060738.

本文引用的文献

1
An Improved At-Labeled Agent for PSMA-Targeted α-Therapy.
J Nucl Med. 2022 Feb;63(2):259-267. doi: 10.2967/jnumed.121.262098. Epub 2021 Jun 4.
3
Astatine partitioning between nitric acid and conventional solvents: indication of covalency in ketone complexation of AtO.
Chem Commun (Camb). 2020 Aug 14;56(63):9004-9007. doi: 10.1039/d0cc03804k. Epub 2020 Jul 8.
4
A Solid-State Support for Separating Astatine-211 from Bismuth.
Inorg Chem. 2020 May 4;59(9):6137-6146. doi: 10.1021/acs.inorgchem.0c00221. Epub 2020 Apr 17.
5
Labeling Monoclonal Antibody with α-emitting At at High Activity Levels via a Tin Precursor.
Cancer Biother Radiopharm. 2020 Sep;35(7):511-519. doi: 10.1089/cbr.2019.3204. Epub 2020 Feb 28.
6
Realizing Clinical Trials with Astatine-211: The Chemistry Infrastructure.
Cancer Biother Radiopharm. 2020 Aug;35(6):425-436. doi: 10.1089/cbr.2019.3055. Epub 2020 Feb 20.
8
Labeling of Anti-HER2 Nanobodies with Astatine-211: Optimization and the Effect of Different Coupling Reagents on Their in Vivo Behavior.
Mol Pharm. 2019 Aug 5;16(8):3524-3533. doi: 10.1021/acs.molpharmaceut.9b00354. Epub 2019 Jul 3.
10

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验