Department of Molecular Structural Biology, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany.
Molecular Biotechnology and Systems Biology, Technische Universität Kaiserslautern, 67663 Kaiserslautern, Germany.
Cell. 2021 Jul 8;184(14):3643-3659.e23. doi: 10.1016/j.cell.2021.05.011. Epub 2021 Jun 23.
Vesicle-inducing protein in plastids 1 (VIPP1) is essential for the biogenesis and maintenance of thylakoid membranes, which transform light into life. However, it is unknown how VIPP1 performs its vital membrane-remodeling functions. Here, we use cryo-electron microscopy to determine structures of cyanobacterial VIPP1 rings, revealing how VIPP1 monomers flex and interweave to form basket-like assemblies of different symmetries. Three VIPP1 monomers together coordinate a non-canonical nucleotide binding pocket on one end of the ring. Inside the ring's lumen, amphipathic helices from each monomer align to form large hydrophobic columns, enabling VIPP1 to bind and curve membranes. In vivo mutations in these hydrophobic surfaces cause extreme thylakoid swelling under high light, indicating an essential role of VIPP1 lipid binding in resisting stress-induced damage. Using cryo-correlative light and electron microscopy (cryo-CLEM), we observe oligomeric VIPP1 coats encapsulating membrane tubules within the Chlamydomonas chloroplast. Our work provides a structural foundation for understanding how VIPP1 directs thylakoid biogenesis and maintenance.
质体囊泡诱导蛋白 1(VIPP1)对于类囊体膜的生物发生和维持至关重要,因为类囊体膜可以将光能转化为生命。然而,目前尚不清楚 VIPP1 如何发挥其重要的膜重塑功能。在这里,我们使用冷冻电子显微镜来确定蓝细菌 VIPP1 环的结构,揭示了 VIPP1 单体如何弯曲和交织,形成不同对称性的篮状组装体。三个 VIPP1 单体一起在环的一端协调一个非典型的核苷酸结合口袋。在环的腔内部,每个单体的两亲性螺旋排列在一起形成大的疏水性柱,使 VIPP1 能够结合和弯曲膜。在体内,这些疏水性表面的突变会导致高光下类囊体的极度肿胀,表明 VIPP1 与脂质的结合对于抵抗应激诱导的损伤至关重要。通过使用冷冻相关的光和电子显微镜(cryo-CLEM),我们观察到寡聚 VIPP1 外壳在衣藻叶绿体中包裹着膜小管。我们的工作为理解 VIPP1 如何指导类囊体的生物发生和维持提供了结构基础。