Suppr超能文献

基于准分布式光纤传感器的组织间质激光消融控制系统:理论与实验研究。

Quasi-distributed fiber optic sensor-based control system for interstitial laser ablation of tissue: theoretical and experimental investigations.

作者信息

Bianchi Leonardo, Korganbayev Sanzhar, Orrico Annalisa, De Landro Martina, Saccomandi Paola

机构信息

Department of Mechanical Engineering, Politecnico di Milano, Milan, Italy.

出版信息

Biomed Opt Express. 2021 Apr 21;12(5):2841-2858. doi: 10.1364/BOE.419541. eCollection 2021 May 1.

Abstract

This work proposes the quasi-distributed real-time monitoring and control of laser ablation (LA) of liver tissue. To confine the thermal damage, a pre-planning stage of the control strategy based on numerical simulations of the bioheat-transfer was developed to design the control parameters, then experimentally assessed. Fiber Bragg grating (FBG) sensors were employed to design the automatic thermometry system used for temperature feedback control for interstitial LA. The tissue temperature was maintained at a pre-set value, and the influence of different sensor locations (on the direction of the beam propagation and backward) on the thermal outcome was evaluated in comparison with the uncontrolled case. Results show that the implemented computational model was able to properly describe the temperature evolution of the irradiated tissue. Furthermore, the realized control strategy allowed for the accurate confinement of the laser-induced temperature increase, especially when the temperature control was actuated by sensors located in the direction of the beam propagation, as confirmed by the calculated fractions of necrotic tissues (e.g., 23 mm and 53 mm for the controlled and uncontrolled LA, respectively).

摘要

这项工作提出了对肝组织激光消融(LA)进行准分布式实时监测与控制。为了限制热损伤,基于生物热传递数值模拟开发了控制策略的预规划阶段,以设计控制参数,然后进行实验评估。采用光纤布拉格光栅(FBG)传感器设计用于间质LA温度反馈控制的自动测温系统。将组织温度维持在预设值,并与未控制的情况相比,评估不同传感器位置(沿光束传播方向和反向)对热结果的影响。结果表明,所实施的计算模型能够恰当地描述受辐照组织的温度演变。此外,所实现的控制策略能够精确限制激光诱导的温度升高,特别是当温度控制由位于光束传播方向的传感器启动时,这一点通过计算的坏死组织比例得到证实(例如,控制LA和未控制LA分别为23毫米和53毫米)。

相似文献

1
Quasi-distributed fiber optic sensor-based control system for interstitial laser ablation of tissue: theoretical and experimental investigations.
Biomed Opt Express. 2021 Apr 21;12(5):2841-2858. doi: 10.1364/BOE.419541. eCollection 2021 May 1.
4
Fiber-optic chirped FBG for distributed thermal monitoring of ex-vivo radiofrequency ablation of liver.
Biomed Opt Express. 2014 May 13;5(6):1799-811. doi: 10.1364/BOE.5.001799. eCollection 2014 Jun 1.
5
Fiber Optic Sensors-Based Thermal Analysis of Perfusion-Mediated Tissue Cooling in Liver Undergoing Laser Ablation.
IEEE Trans Biomed Eng. 2021 Mar;68(3):1066-1073. doi: 10.1109/TBME.2020.3004983. Epub 2021 Feb 18.
8
Magnetic Resonance-compatible needle-like probe based on Bragg grating technology for measuring temperature during Laser Ablation.
Annu Int Conf IEEE Eng Med Biol Soc. 2015 Aug;2015:1287-90. doi: 10.1109/EMBC.2015.7318603.
10
Fiber Optic Sensors for Temperature Monitoring during Thermal Treatments: An Overview.
Sensors (Basel). 2016 Jul 22;16(7):1144. doi: 10.3390/s16071144.

引用本文的文献

1
Optical signatures of thermal damage on ex-vivo brain, lung and heart tissues using time-domain diffuse optical spectroscopy.
Biomed Opt Express. 2024 Mar 19;15(4):2481-2497. doi: 10.1364/BOE.517376. eCollection 2024 Apr 1.
2
Non-Fourier Bioheat Transfer Analysis in Brain Tissue During Interstitial Laser Ablation: Analysis of Multiple Influential Factors.
Ann Biomed Eng. 2024 Apr;52(4):967-981. doi: 10.1007/s10439-023-03433-5. Epub 2024 Jan 18.
3
On the role of polymeric hydrogels in the thermal response of gold nanorods under NIR laser irradiation.
Nanoscale Adv. 2023 Aug 28;5(24):6870-6879. doi: 10.1039/d3na00353a. eCollection 2023 Dec 5.
7
In vivo photothermal therapy monitored by multi-position calibrated photoacoustic thermometer.
Photoacoustics. 2023 Apr 28;31:100501. doi: 10.1016/j.pacs.2023.100501. eCollection 2023 Jun.
8
Dual-modality fibre optic probe for simultaneous ablation and ultrasound imaging.
Commun Eng. 2022 Jul 28;1(1). doi: 10.1038/s44172-022-00020-9.
10
Design of a temperature-feedback controlled automated magnetic hyperthermia therapy device.
Front Therm Eng. 2023;3. doi: 10.3389/fther.2023.1131262. Epub 2023 Feb 27.

本文引用的文献

1
Effect of optical energy modulation on the thermal response of biological tissue: computational and experimental validations.
Biomed Opt Express. 2020 Nov 4;11(12):6905-6919. doi: 10.1364/BOE.404827. eCollection 2020 Dec 1.
3
Fiber Optic Sensors-Based Thermal Analysis of Perfusion-Mediated Tissue Cooling in Liver Undergoing Laser Ablation.
IEEE Trans Biomed Eng. 2021 Mar;68(3):1066-1073. doi: 10.1109/TBME.2020.3004983. Epub 2021 Feb 18.
4
Heating technology for malignant tumors: a review.
Int J Hyperthermia. 2020;37(1):711-741. doi: 10.1080/02656736.2020.1779357.
5
Association of Liver Tissue Optical Properties and Thermal Damage.
Lasers Surg Med. 2020 Oct;52(8):779-787. doi: 10.1002/lsm.23209. Epub 2020 Jan 9.
6
Outcomes in Patients Treated with Laser Interstitial Thermal Therapy for Primary Brain Cancer and Brain Metastases.
Oncologist. 2019 Dec;24(12):e1467-e1470. doi: 10.1634/theoncologist.2019-0213. Epub 2019 Aug 22.
7
Computational analysis of linear energy modulation for laser thermal coagulation.
Biomed Opt Express. 2018 May 9;9(6):2575-2587. doi: 10.1364/BOE.9.002575. eCollection 2018 Jun 1.
8
Feasibility of EUS-guided Nd:YAG laser ablation of unresectable pancreatic adenocarcinoma.
Gastrointest Endosc. 2018 Jul;88(1):168-174.e1. doi: 10.1016/j.gie.2018.02.007. Epub 2018 Feb 13.
9
Laser Ablation for Cancer: Past, Present and Future.
J Funct Biomater. 2017 Jun 14;8(2):19. doi: 10.3390/jfb8020019.
10
Laser interstitial thermotherapy application for breast surgery: Current situation and new trends.
Breast. 2017 Jun;33:145-152. doi: 10.1016/j.breast.2017.03.016. Epub 2017 Apr 7.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验