Suppr超能文献

疟原虫氨基酸酰-tRNA 合成酶的结构分析为抗疟药物发现提供了新途径。

Structural analyses of the malaria parasite aminoacyl-tRNA synthetases provide new avenues for antimalarial drug discovery.

机构信息

Structural Parasitology Group, Molecular Medicine, International Center for Genetic Engineering and Biotechnology, New Delhi, India.

ICMR-National Institute of Malaria Research, New Delhi, India.

出版信息

Protein Sci. 2021 Sep;30(9):1793-1803. doi: 10.1002/pro.4148.

Abstract

Malaria is a parasitic illness caused by the genus Plasmodium from the apicomplexan phylum. Five plasmodial species of P. falciparum (Pf), P. knowlesi, P. malariae, P. ovale, and P. vivax (Pv) are responsible for causing malaria in humans. According to the World Malaria Report 2020, there were 229 million cases and ~ 0.04 million deaths of which 67% were in children below 5 years of age. While more than 3 billion people are at risk of malaria infection globally, antimalarial drugs are their only option for treatment. Antimalarial drug resistance keeps arising periodically and thus threatens the main line of malaria treatment, emphasizing the need to find new alternatives. The availability of whole genomes of P. falciparum and P. vivax has allowed targeting their unexplored plasmodial enzymes for inhibitor development with a focus on multistage targets that are crucial for parasite viability in both the blood and liver stages. Over the past decades, aminoacyl-tRNA synthetases (aaRSs) have been explored as anti-bacterial and anti-fungal drug targets, and more recently (since 2009) aaRSs are also the focus of antimalarial drug targeting. Here, we dissect the structure-based knowledge of the most advanced three aaRSs-lysyl- (KRS), prolyl- (PRS), and phenylalanyl- (FRS) synthetases in terms of development of antimalarial drugs. These examples showcase the promising potential of this family of enzymes to provide druggable targets that stall protein synthesis upon inhibition and thereby kill malaria parasites selectively.

摘要

疟疾是一种由疟原虫属(Plasmodium)寄生虫引起的疾病,属于顶复门(Apicomplexa)。疟原虫属有 5 种,分别为恶性疟原虫(Pf)、诺氏疟原虫(P. knowlesi)、间日疟原虫(P. malariae)、卵形疟原虫(P. ovale)和三日疟原虫(P. vivax)(Pv),它们是导致人类疟疾的主要病原体。根据 2020 年世界疟疾报告,全球有 2.29 亿疟疾病例和~0.04 万例死亡病例,其中 67%发生在 5 岁以下儿童。虽然全球有超过 30 亿人面临疟疾感染的风险,但抗疟药物是他们唯一的治疗选择。抗疟药物耐药性周期性出现,从而威胁到疟疾治疗的主要途径,这强调了寻找新替代品的必要性。恶性疟原虫和三日疟原虫的全基因组的可用性,使得针对其未开发的疟原虫酶进行抑制剂开发成为可能,重点是针对血期和肝期寄生虫存活至关重要的多阶段靶标。在过去的几十年中,氨酰-tRNA 合成酶(aaRSs)已被探索作为抗细菌和抗真菌药物靶点,最近(自 2009 年以来)aaRSs 也是抗疟药物靶向的焦点。在这里,我们根据抗疟药物的开发情况,从结构基础上剖析了最先进的三种 aaRSs-赖氨酸(KRS)、脯氨酸(PRS)和苯丙氨酸(FRS)合成酶的知识。这些例子展示了该酶家族在提供可成药靶标方面的巨大潜力,这些靶标在抑制时会阻止蛋白质合成,从而有选择性地杀死疟原虫。

相似文献

2
Aminoacyl tRNA synthetases as malarial drug targets: a comparative bioinformatics study.
Malar J. 2019 Feb 6;18(1):34. doi: 10.1186/s12936-019-2665-6.
4
The cytoplasmic prolyl-tRNA synthetase of the malaria parasite is a dual-stage target of febrifugine and its analogs.
Sci Transl Med. 2015 May 20;7(288):288ra77. doi: 10.1126/scitranslmed.aaa3575.
5
A genomic glimpse of aminoacyl-tRNA synthetases in malaria parasite Plasmodium falciparum.
BMC Genomics. 2009 Dec 31;10:644. doi: 10.1186/1471-2164-10-644.
6
Selective inhibition of an apicoplastic aminoacyl-tRNA synthetase from Plasmodium falciparum.
Chembiochem. 2013 Mar 4;14(4):499-509. doi: 10.1002/cbic.201200620.
7
Structural and functional analysis of the anti-malarial drug target prolyl-tRNA synthetase.
J Struct Funct Genomics. 2014 Dec;15(4):181-90. doi: 10.1007/s10969-014-9186-x. Epub 2014 Jul 22.
8
Genomic analysis of single nucleotide polymorphisms in malaria parasite drug targets.
Parasit Vectors. 2022 Aug 30;15(1):309. doi: 10.1186/s13071-022-05422-4.

引用本文的文献

1
Single-cell quantitative bioimaging of liver stage translation.
mSphere. 2023 Dec 20;8(6):e0054423. doi: 10.1128/msphere.00544-23. Epub 2023 Nov 1.
2
Antimalarial drug discovery: progress and approaches.
Nat Rev Drug Discov. 2023 Oct;22(10):807-826. doi: 10.1038/s41573-023-00772-9. Epub 2023 Aug 31.
3
A novel Modulator of Ring Stage Translation (MRST) gene alters artemisinin sensitivity in .
mSphere. 2023 Aug 24;8(4):e0015223. doi: 10.1128/msphere.00152-23. Epub 2023 May 23.
4
Targeting prolyl-tRNA synthetase via a series of ATP-mimetics to accelerate drug discovery against toxoplasmosis.
PLoS Pathog. 2023 Feb 28;19(2):e1011124. doi: 10.1371/journal.ppat.1011124. eCollection 2023 Feb.
5
Genomic analysis of single nucleotide polymorphisms in malaria parasite drug targets.
Parasit Vectors. 2022 Aug 30;15(1):309. doi: 10.1186/s13071-022-05422-4.
6
Double drugging of prolyl-tRNA synthetase provides a new paradigm for anti-infective drug development.
PLoS Pathog. 2022 Mar 25;18(3):e1010363. doi: 10.1371/journal.ppat.1010363. eCollection 2022 Mar.

本文引用的文献

1
Design, Synthesis, and Structural Analysis of Cladosporin-Based Inhibitors of Malaria Parasites.
ACS Infect Dis. 2021 Jun 11;7(6):1777-1794. doi: 10.1021/acsinfecdis.1c00092. Epub 2021 Apr 12.
2
Malaria elimination in India requires additional surveillance mechanisms.
J Public Health (Oxf). 2022 Aug 25;44(3):527-531. doi: 10.1093/pubmed/fdab106.
3
Geographical spread and structural basis of sulfadoxine-pyrimethamine drug-resistant malaria parasites.
Int J Parasitol. 2021 Jun;51(7):505-525. doi: 10.1016/j.ijpara.2020.12.011. Epub 2021 Mar 26.
4
MalDA, Accelerating Malaria Drug Discovery.
Trends Parasitol. 2021 Jun;37(6):493-507. doi: 10.1016/j.pt.2021.01.009. Epub 2021 Feb 26.
5
6
Overlaying COVID-19 mitigation plans on malaria control infrastructures.
Trans R Soc Trop Med Hyg. 2021 Jan 7;115(1):6-8. doi: 10.1093/trstmh/traa108.
7
Profiles of Kelch mutations in Plasmodium falciparum across South Asia and their implications for tracking drug resistance.
Int J Parasitol Drugs Drug Resist. 2019 Dec;11:49-58. doi: 10.1016/j.ijpddr.2019.10.001. Epub 2019 Oct 4.
9
Aminoacyl tRNA synthetases as malarial drug targets: a comparative bioinformatics study.
Malar J. 2019 Feb 6;18(1):34. doi: 10.1186/s12936-019-2665-6.
10
Drug repurposing: progress, challenges and recommendations.
Nat Rev Drug Discov. 2019 Jan;18(1):41-58. doi: 10.1038/nrd.2018.168. Epub 2018 Oct 12.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验