Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, Leuven, Belgium.
Global Virus Network (GVN), Baltimore, MD, USA.
Nature. 2021 Jul;595(7869):713-717. doi: 10.1038/s41586-021-03754-2. Epub 2021 Jun 30.
After the first wave of SARS-CoV-2 infections in spring 2020, Europe experienced a resurgence of the virus starting in late summer 2020 that was deadlier and more difficult to contain. Relaxed intervention measures and summer travel have been implicated as drivers of the second wave. Here we build a phylogeographical model to evaluate how newly introduced lineages, as opposed to the rekindling of persistent lineages, contributed to the resurgence of COVID-19 in Europe. We inform this model using genomic, mobility and epidemiological data from 10 European countries and estimate that in many countries more than half of the lineages circulating in late summer resulted from new introductions since 15 June 2020. The success in onward transmission of newly introduced lineages was negatively associated with the local incidence of COVID-19 during this period. The pervasive spread of variants in summer 2020 highlights the threat of viral dissemination when restrictions are lifted, and this needs to be carefully considered in strategies to control the current spread of variants that are more transmissible and/or evade immunity. Our findings indicate that more effective and coordinated measures are required to contain the spread through cross-border travel even as vaccination is reducing disease burden.
2020 年春季 SARS-CoV-2 感染的第一波之后,欧洲从 2020 年夏末开始出现了更致命且更难控制的病毒再次爆发。干预措施的放宽和夏季旅行被认为是第二波疫情的驱动因素。在这里,我们构建了一个系统发育地理模型,以评估新引入的谱系相对于持续谱系的再次出现,如何促成欧洲 COVID-19 的再次爆发。我们使用来自 10 个欧洲国家的基因组、流动性和流行病学数据来为该模型提供信息,并估计在许多国家,2020 年 6 月 15 日以来引入的新谱系导致了夏季后期传播的谱系的一半以上。新引入的谱系在传播中的成功与这一期间当地 COVID-19 的发病率呈负相关。2020 年夏季变体的广泛传播突显了当限制措施放宽时病毒传播的威胁,在控制更具传染性和/或逃避免疫的现有变体传播的策略中,需要对此进行仔细考虑。我们的研究结果表明,即使疫苗接种正在减轻疾病负担,也需要采取更有效和协调的措施来控制跨境旅行的传播。