Suppr超能文献

BiGAN:基于双向生成对抗网络的 lncRNA 疾病关联预测。

BiGAN: LncRNA-disease association prediction based on bidirectional generative adversarial network.

机构信息

School of Electronic Engineering, Heilongjiang University, Harbin, 150080, China.

Postdoctoral Program of Heilongjiang Hengxun Technology Co., Ltd., Harbin, 150090, China.

出版信息

BMC Bioinformatics. 2021 Jun 30;22(1):357. doi: 10.1186/s12859-021-04273-7.

Abstract

BACKGROUND

An increasing number of studies have shown that lncRNAs are crucial for the control of hormones and the regulation of various physiological processes in the human body, and deletion mutations in RNA are related to many human diseases. LncRNA- disease association prediction is very useful for understanding pathogenesis, diagnosis, and prevention of diseases, and is helpful for labelling relevant biological information.

RESULTS

In this manuscript, we propose a computational model named bidirectional generative adversarial network (BiGAN), which consists of an encoder, a generator, and a discriminator to predict new lncRNA-disease associations. We construct features between lncRNA and disease pairs by utilizing the disease semantic similarity, lncRNA sequence similarity, and Gaussian interaction profile kernel similarities of lncRNAs and diseases. The BiGAN maps the latent features of similarity features to predict unverified association between lncRNAs and diseases. The computational results have proved that the BiGAN performs significantly better than other state-of-the-art approaches in cross-validation. We employed the proposed model to predict candidate lncRNAs for renal cancer and colon cancer. The results are promising. Case studies show that almost 70% of lncRNAs in the top 10 prediction lists are verified by recent biological research.

CONCLUSION

The experimental results indicated that our proposed model had an accurate predictive ability for the association of lncRNA-disease pairs.

摘要

背景

越来越多的研究表明,lncRNAs 对激素的控制和人体各种生理过程的调节至关重要,而 RNA 的缺失突变与许多人类疾病有关。lncRNA-疾病关联预测对于理解发病机制、诊断和预防疾病非常有用,有助于标记相关的生物信息。

结果

在本文中,我们提出了一种名为双向生成对抗网络(BiGAN)的计算模型,它由一个编码器、一个生成器和一个判别器组成,用于预测新的 lncRNA-疾病关联。我们通过利用疾病语义相似性、lncRNA 序列相似性和疾病的高斯相互作用分布核相似性,构建了 lncRNA 和疾病对之间的特征。BiGAN 将相似性特征的潜在特征映射到预测 lncRNA 和疾病之间未验证的关联。计算结果证明,BiGAN 在交叉验证中明显优于其他最先进的方法。我们将提出的模型应用于预测肾癌和结肠癌的候选 lncRNA。结果很有前景。案例研究表明,在 top10 预测列表中,近 70%的 lncRNA 被最近的生物学研究验证。

结论

实验结果表明,我们提出的模型对 lncRNA-疾病对的关联具有准确的预测能力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9bbc/8247109/c7a709a865bd/12859_2021_4273_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验