Suppr超能文献

从单导联短 ECG 中学习可解释的时-形态模式以进行自动心律失常分类。

Learning Explainable Time-Morphology Patterns for Automatic Arrhythmia Classification from Short Single-Lead ECGs.

机构信息

Bio-Intelligence & Data Mining Laboratory, School of Electronic and Electrical Engineering, Kyungpook National University, Daegu 41566, Korea.

出版信息

Sensors (Basel). 2021 Jun 24;21(13):4331. doi: 10.3390/s21134331.

Abstract

Automatic detection of abnormal heart rhythms, including atrial fibrillation (AF), using signals obtained from a single-lead wearable electrocardiogram (ECG) device, is useful for daily cardiac health monitoring. In this study, we propose a novel image-based deep learning framework to classify single-lead ECG recordings of short variable length into several different rhythms associated with arrhythmias. By transforming variable-length 1D ECG signals into fixed-size 2D time-morphology representations and feeding them to the beat-interval-texture convolutional neural network (BIT-CNN) model, we aimed to learn the comprehensible characteristics of beat shape and inter-beat patterns over time for arrhythmia classification. The proposed approach allows feature embedding vectors to provide interpretable time-morphology patterns focused at each step of the learning process. In addition, this method reduces the number of model parameters needed to be trained and aids visual interpretation, while maintaining similar performance to other CNN-based approaches to arrhythmia classification. For experiments, we used the PhysioNet/CinC Challenge 2017 dataset and achieved an overall F of 81.75% and F of 76.87%, which are comparable to those of the state-of-the-art methods for variable-length ECGs.

摘要

利用单导联可穿戴心电图(ECG)设备获取的信号自动检测异常心律,包括心房颤动(AF),可用于日常心脏健康监测。在这项研究中,我们提出了一种新的基于图像的深度学习框架,用于将可变长度的单导联 ECG 记录分类为与心律失常相关的几种不同节律。通过将可变长度的 1D ECG 信号转换为固定大小的 2D 时变形态表示,并将其输入到节拍间隔纹理卷积神经网络(BIT-CNN)模型中,我们旨在学习节拍形状和节拍模式的可理解特征随时间变化的心律失常分类。该方法允许特征嵌入向量在学习过程的每个步骤提供可解释的时变形态模式。此外,这种方法减少了需要训练的模型参数数量,并有助于可视化解释,同时保持与其他基于 CNN 的心律失常分类方法相当的性能。在实验中,我们使用了 PhysioNet/CinC Challenge 2017 数据集,实现了整体 F 值为 81.75%和 F 值为 76.87%,与可变长度 ECG 的最新方法相当。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ff25/8272104/bf2d3fefa223/sensors-21-04331-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验