Department of Chemistry, Illinois State University, Normal, Illinois 61790, United States.
Bioconjug Chem. 2021 Aug 18;32(8):1753-1762. doi: 10.1021/acs.bioconjchem.1c00261. Epub 2021 Jul 6.
Many emerging nanobiotechnologies rely on the proper function of proteins immobilized on gold nanoparticles. Often, the surface chemistry of the AuNP is engineered to control the orientation, surface coverage, and structure of the adsorbed protein to maximize conjugate function. Here, we chemically modified antibody to investigate the effect of protein surface chemistries on adsorption to AuNPs. A monoclonal anti-horseradish peroxidase IgG antibody (anti-HRP) was reacted with N-succinimidyl acrylate (NSA) or reduced dithiobissuccinimidyl propionate (DSP) to modify lysine residues. Zeta potential measurements confirmed that both chemical modifications reduced the localized regions of positive charge on the protein surface, while the DSP modification incorporated additional free thiols. Dynamic light scattering confirmed that native and chemically modified antibodies adsorbed onto AuNPs to form bioconjugates; however, adsorption kinetics revealed that the NSA-modified antibody required significantly more time to allow for the formation of a hard corona. Moreover, conjugates formed with the NSA-modified antibody lost antigen-binding function, whereas unmodified and DSP-modified antibodies adsorbed onto AuNPs to form functional conjugates. These results indicate that high-affinity functional groups are required to prevent protein unfolding and loss of function when adsorbed on the AuNP surface. The reduced protein charge and high-affinity thiol groups on the DSP-modified antibody enabled pH-dependent control of protein orientation and the formation of highly active conjugates at solution pHs (<7.5) that are inaccessible with unmodified antibody due to conjugate aggregation. This study establishes parameters for protein modification to facilitate the formation of highly functional and stable protein-AuNP conjugates.
许多新兴的纳米生物技术依赖于固定在金纳米粒子上的蛋白质的正常功能。通常,通过设计 AuNP 的表面化学来控制吸附蛋白质的取向、表面覆盖率和结构,以最大限度地提高结合物的功能。在这里,我们通过化学修饰抗体来研究蛋白质表面化学对吸附到 AuNP 的影响。一种单克隆抗辣根过氧化物酶 IgG 抗体(抗 HRP)与琥珀酰亚胺基丙烯酰胺(NSA)或还原二硫代双琥珀酰亚胺基丙酸酯(DSP)反应,修饰赖氨酸残基。ζ电位测量证实,这两种化学修饰都降低了蛋白质表面局部带正电荷的区域,而 DSP 修饰则引入了额外的游离硫醇。动态光散射证实,天然和化学修饰的抗体吸附到 AuNP 上形成生物缀合物;然而,吸附动力学表明,NSA 修饰的抗体需要更多的时间来形成硬壳。此外,用 NSA 修饰的抗体形成的缀合物丧失了抗原结合功能,而未修饰和 DSP 修饰的抗体吸附到 AuNP 上形成功能缀合物。这些结果表明,当吸附在 AuNP 表面时,需要高亲和力的功能基团来防止蛋白质展开和功能丧失。修饰后的抗体电荷减少,且具有高亲和力的硫醇基团,使得在溶液 pH(<7.5)下能够实现 pH 依赖性控制蛋白质的取向,并形成高活性的缀合物,而未经修饰的抗体由于缀合物聚集而无法达到该 pH 值。本研究确立了蛋白质修饰的参数,以促进高功能和稳定的蛋白质-AuNP 缀合物的形成。