Suppr超能文献

辅助亚基对钾通道的生物物理和药理学性质的控制。

Control of Biophysical and Pharmacological Properties of Potassium Channels by Ancillary Subunits.

机构信息

Bioelectricity Laboratory, Department of Physiology and Biophysics, School of Medicine, University of California, Irvine, CA, USA.

出版信息

Handb Exp Pharmacol. 2021;267:445-480. doi: 10.1007/164_2021_512.

Abstract

Potassium channels facilitate and regulate physiological processes as diverse as electrical signaling, ion, solute and hormone secretion, fluid homeostasis, hearing, pain sensation, muscular contraction, and the heartbeat. Potassium channels are each formed by either a tetramer or dimer of pore-forming α subunits that co-assemble to create a multimer with a K-selective pore that in most cases is capable of functioning as a discrete unit to pass K ions across the cell membrane. The reality in vivo, however, is that the potassium channel α subunit multimers co-assemble with ancillary subunits to serve specific physiological functions. The ancillary subunits impart specific physiological properties that are often required for a particular activity in vivo; in addition, ancillary subunit interaction often alters the pharmacology of the resultant complex. In this chapter the modes of action of ancillary subunits on K channel physiology and pharmacology are described and categorized into various mechanistic classes.

摘要

钾通道促进和调节生理过程,如电信号、离子、溶质和激素分泌、体液平衡、听觉、疼痛感觉、肌肉收缩和心跳。钾通道由形成孔的α亚基的四聚体或二聚体组成,这些亚基共同组装成一个具有 K 选择性孔的多聚体,在大多数情况下,该孔能够作为一个离散的单位将 K 离子穿过细胞膜。然而,在体内的实际情况是,钾通道α亚基多聚体与辅助亚基共同组装,以发挥特定的生理功能。辅助亚基赋予特定的生理特性,这些特性通常是体内特定活动所必需的;此外,辅助亚基的相互作用常常改变所得复合物的药理学。在本章中,描述了辅助亚基对 K 通道生理学和药理学的作用模式,并将其分类为各种机制类别。

相似文献

1
2
Modification of K+ channel-drug interactions by ancillary subunits.
J Physiol. 2008 Feb 15;586(4):929-50. doi: 10.1113/jphysiol.2007.139279. Epub 2007 Dec 20.
3
Dynamic subunit stoichiometry confers a progressive continuum of pharmacological sensitivity by KCNQ potassium channels.
Proc Natl Acad Sci U S A. 2013 May 21;110(21):8732-7. doi: 10.1073/pnas.1300684110. Epub 2013 May 6.
4
Kv Channel Ancillary Subunits: Where Do We Go from Here?
Physiology (Bethesda). 2022 Sep 1;37(5):0. doi: 10.1152/physiol.00005.2022.
5
Impact of ancillary subunits on ventricular repolarization.
J Electrocardiol. 2007 Nov-Dec;40(6 Suppl):S42-6. doi: 10.1016/j.jelectrocard.2007.05.021.
6
Molecular diversity of vascular potassium channel isoforms.
Clin Exp Pharmacol Physiol. 2002 Apr;29(4):317-23. doi: 10.1046/j.1440-1681.2002.03651.x.
7
The impact of ancillary subunits on small-molecule interactions with voltage-gated potassium channels.
Curr Pharm Des. 2006;12(18):2285-302. doi: 10.2174/138161206777585175.
9
KCNQ potassium channels: physiology, pathophysiology, and pharmacology.
Pharmacol Ther. 2001 Apr;90(1):1-19. doi: 10.1016/s0163-7258(01)00116-4.
10
Structure and function of cardiac potassium channels.
Cardiovasc Res. 1999 May;42(2):377-90. doi: 10.1016/s0008-6363(99)00071-1.

引用本文的文献

2
The Role of Photobiomodulation to Modulate Ion Channels in the Nervous System: A Systematic Review.
Cell Mol Neurobiol. 2024 Nov 23;44(1):79. doi: 10.1007/s10571-024-01513-1.
3
Effect of a sensing charge mutation on the deactivation of KV7.2 channels.
J Gen Physiol. 2024 Mar 4;156(3). doi: 10.1085/jgp.202213284. Epub 2024 Jan 18.
4
Ion channels in neurodevelopment: lessons from the Integrin-KCNB1 channel complex.
Neural Regen Res. 2023 Nov;18(11):2365-2369. doi: 10.4103/1673-5374.371347.
5
Ion channels and channelopathies in glomeruli.
Physiol Rev. 2023 Jan 1;103(1):787-854. doi: 10.1152/physrev.00013.2022. Epub 2022 Aug 25.
6
Deciphering Common Long QT Syndrome Using CRISPR/Cas9 in Human-Induced Pluripotent Stem Cell-Derived Cardiomyocytes.
Front Cardiovasc Med. 2022 May 13;9:889519. doi: 10.3389/fcvm.2022.889519. eCollection 2022.

本文引用的文献

1
Potassium channels act as chemosensors for solute transporters.
Commun Biol. 2020 Feb 28;3(1):90. doi: 10.1038/s42003-020-0820-9.
2
3
Structural Basis of Human KCNQ1 Modulation and Gating.
Cell. 2020 Jan 23;180(2):340-347.e9. doi: 10.1016/j.cell.2019.12.003. Epub 2019 Dec 26.
4
Pharmacological chaperones of ATP-sensitive potassium channels: Mechanistic insight from cryoEM structures.
Mol Cell Endocrinol. 2020 Feb 15;502:110667. doi: 10.1016/j.mce.2019.110667. Epub 2019 Dec 9.
5
Molecular structures of the human Slo1 K channel in complex with β4.
Elife. 2019 Dec 9;8:e51409. doi: 10.7554/eLife.51409.
6
M-Channel Activation Contributes to the Anticonvulsant Action of the Ketone Body -Hydroxybutyrate.
J Pharmacol Exp Ther. 2020 Feb;372(2):148-156. doi: 10.1124/jpet.119.263350. Epub 2019 Nov 22.
7
A conserved arginine/lysine-based motif promotes ER export of KCNE1 and KCNE2 to regulate KCNQ1 channel activity.
Channels (Austin). 2019 Dec;13(1):483-497. doi: 10.1080/19336950.2019.1685626.
8
Metabolic regulation of Kv channels and cardiac repolarization by Kvβ2 subunits.
J Mol Cell Cardiol. 2019 Dec;137:93-106. doi: 10.1016/j.yjmcc.2019.09.013. Epub 2019 Oct 19.
9
Mechanism of pharmacochaperoning in a mammalian K channel revealed by cryo-EM.
Elife. 2019 Jul 25;8:e46417. doi: 10.7554/eLife.46417.
10
Regulation of BK Channels by Beta and Gamma Subunits.
Annu Rev Physiol. 2019 Feb 10;81:113-137. doi: 10.1146/annurev-physiol-022516-034038.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验