Suppr超能文献

用于预测儿童 COVID-19 严重程度的贝叶斯模型。

A Bayesian Model to Predict COVID-19 Severity in Children.

机构信息

From the Fundación de Investigación Biomédica Hospital 12 de Octubre, Instituto de Investigación 12 de Octubre (imas12), Madrid, Spain.

RITIP (Translational Research Network in Paediatric Infectious Diseases), Madrid, Spain.

出版信息

Pediatr Infect Dis J. 2021 Aug 1;40(8):e287-e293. doi: 10.1097/INF.0000000000003204.

Abstract

BACKGROUND

We aimed to identify risk factors causing critical disease in hospitalized children with COVID-19 and to build a predictive model to anticipate the probability of need for critical care.

METHODS

We conducted a multicenter, prospective study of children with SARS-CoV-2 infection in 52 Spanish hospitals. The primary outcome was the need for critical care. We used a multivariable Bayesian model to estimate the probability of needing critical care.

RESULTS

The study enrolled 350 children from March 12, 2020, to July 1, 2020: 292 (83.4%) and 214 (73.7%) were considered to have relevant COVID-19, of whom 24.2% required critical care. Four major clinical syndromes of decreasing severity were identified: multi-inflammatory syndrome (MIS-C) (17.3%), bronchopulmonary (51.4%), gastrointestinal (11.6%), and mild syndrome (19.6%). Main risk factors were high C-reactive protein and creatinine concentration, lymphopenia, low platelets, anemia, tachycardia, age, neutrophilia, leukocytosis, and low oxygen saturation. These risk factors increased the risk of critical disease depending on the syndrome: the more severe the syndrome, the more risk the factors conferred. Based on our findings, we developed an online risk prediction tool (https://rserver.h12o.es/pediatria/EPICOAPP/, username: user, password: 0000).

CONCLUSIONS

Risk factors for severe COVID-19 include inflammation, cytopenia, age, comorbidities, and organ dysfunction. The more severe the syndrome, the more the risk factor increases the risk of critical illness. Risk of severe disease can be predicted with a Bayesian model.

摘要

背景

本研究旨在确定导致 COVID-19 住院患儿发生危重症的相关因素,并建立预测模型以预估患儿接受重症监护的概率。

方法

我们开展了一项多中心、前瞻性研究,纳入西班牙 52 家医院收治的 SARS-CoV-2 感染患儿。主要结局为患儿是否需要接受重症监护。我们采用多变量贝叶斯模型来评估患儿需要接受重症监护的概率。

结果

本研究于 2020 年 3 月 12 日至 7 月 1 日期间共纳入 350 名患儿,其中 292 例(83.4%)和 214 例(73.7%)患儿被认为患有与 COVID-19 相关的疾病,24.2%的患儿需要接受重症监护。共发现 4 种严重程度递减的主要临床综合征:多系统炎症综合征(MIS-C)(17.3%)、支气管肺部(51.4%)、胃肠道(11.6%)和轻度综合征(19.6%)。主要的危险因素包括高 C 反应蛋白和肌酐浓度、淋巴细胞减少、血小板减少、贫血、心动过速、年龄、中性粒细胞增多、白细胞增多和低氧饱和度。这些危险因素根据综合征的严重程度增加了患儿发生危重症的风险:综合征越严重,危险因素的风险越高。基于我们的研究结果,我们开发了一个在线风险预测工具(https://rserver.h12o.es/pediatria/EPICOAPP/,用户名:user,密码:0000)。

结论

COVID-19 患儿发生重症的危险因素包括炎症、细胞减少、年龄、合并症和器官功能障碍。综合征越严重,危险因素增加患儿发生危重症的风险越高。疾病严重程度的风险可以通过贝叶斯模型进行预测。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验