Suppr超能文献

从低分辨率转录组数据中进行 RNA 修饰的弱监督学习。

Weakly supervised learning of RNA modifications from low-resolution epitranscriptome data.

机构信息

Department of Biological Sciences, Xi'an Jiaotong-Liverpool University, Suzhou, Jiangsu 215123, China.

Department of Computer Science, University of Liverpool, Liverpool L69 7ZB, UK.

出版信息

Bioinformatics. 2021 Jul 12;37(Suppl_1):i222-i230. doi: 10.1093/bioinformatics/btab278.

Abstract

MOTIVATION

Increasing evidence suggests that post-transcriptional ribonucleic acid (RNA) modifications regulate essential biomolecular functions and are related to the pathogenesis of various diseases. Precise identification of RNA modification sites is essential for understanding the regulatory mechanisms of RNAs. To date, many computational approaches for predicting RNA modifications have been developed, most of which were based on strong supervision enabled by base-resolution epitranscriptome data. However, high-resolution data may not be available.

RESULTS

We propose WeakRM, the first weakly supervised learning framework for predicting RNA modifications from low-resolution epitranscriptome datasets, such as those generated from acRIP-seq and hMeRIP-seq. Evaluations on three independent datasets (corresponding to three different RNA modification types and their respective sequencing technologies) demonstrated the effectiveness of our approach in predicting RNA modifications from low-resolution data. WeakRM outperformed state-of-the-art multi-instance learning methods for genomic sequences, such as WSCNN, which was originally designed for transcription factor binding site prediction. Additionally, our approach captured motifs that are consistent with existing knowledge, and visualization of the predicted modification-containing regions unveiled the potentials of detecting RNA modifications with improved resolution.

AVAILABILITY IMPLEMENTATION

The source code for the WeakRM algorithm, along with the datasets used, are freely accessible at: https://github.com/daiyun02211/WeakRM.

SUPPLEMENTARY INFORMATION

Supplementary data are available at Bioinformatics online.

摘要

动机

越来越多的证据表明,转录后核糖核酸 (RNA) 修饰调节重要的生物分子功能,并与各种疾病的发病机制有关。准确识别 RNA 修饰位点对于理解 RNA 的调控机制至关重要。迄今为止,已经开发了许多用于预测 RNA 修饰的计算方法,其中大多数方法都是基于基于碱基分辨率的转录后组学数据的强监督。然而,高分辨率数据可能不可用。

结果

我们提出了 WeakRM,这是第一个用于从低分辨率转录后组学数据(例如 acRIP-seq 和 hMeRIP-seq 生成的数据)中预测 RNA 修饰的弱监督学习框架。在三个独立数据集(对应三种不同的 RNA 修饰类型及其各自的测序技术)上的评估表明,我们的方法在从低分辨率数据预测 RNA 修饰方面的有效性。WeakRM 优于最初为转录因子结合位点预测设计的多实例学习方法 WSCNN,后者是用于基因组序列的。此外,我们的方法捕获了与现有知识一致的基序,并且对预测的修饰包含区域的可视化揭示了以提高分辨率检测 RNA 修饰的潜力。

可用性

WeakRM 算法的源代码以及使用的数据集可在以下网址免费获取:https://github.com/daiyun02211/WeakRM。

补充信息

补充数据可在生物信息学在线获得。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b81c/8336446/6e12a930f1c5/btab278f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验