Suppr超能文献

大麦条纹花叶病毒 γb 蛋白破坏叶绿体抗氧化防御以优化病毒复制。

Barley stripe mosaic virus γb protein disrupts chloroplast antioxidant defenses to optimize viral replication.

机构信息

State Key Laboratory of Agro-Biotechnology and Ministry of Agriculture Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing, China.

出版信息

EMBO J. 2021 Aug 16;40(16):e107660. doi: 10.15252/embj.2021107660. Epub 2021 Jul 13.

Abstract

The plant antioxidant system plays important roles in response to diverse abiotic and biotic stresses. However, the effects of virus infection on host redox homeostasis and how antioxidant defense pathway is manipulated by viruses remain poorly understood. We previously demonstrated that the Barley stripe mosaic virus (BSMV) γb protein is recruited to the chloroplast by the viral αa replicase to enhance viral replication. Here, we show that BSMV infection induces chloroplast oxidative stress. The versatile γb protein interacts directly with NADPH-dependent thioredoxin reductase C (NTRC), a core component of chloroplast antioxidant systems. Overexpression of NbNTRC significantly impairs BSMV replication in Nicotiana benthamiana plants, whereas disruption of NbNTRC expression leads to increased viral accumulation and infection severity. To counter NTRC-mediated defenses, BSMV employs the γb protein to competitively interfere with NbNTRC binding to 2-Cys Prx. Altogether, this study indicates that beyond acting as a helicase enhancer, γb also subverts NTRC-mediated chloroplast antioxidant defenses to create an oxidative microenvironment conducive to viral replication.

摘要

植物抗氧化系统在应对各种非生物和生物胁迫方面发挥着重要作用。然而,病毒感染对宿主氧化还原平衡的影响以及病毒如何操纵抗氧化防御途径仍知之甚少。我们之前的研究表明,大麦条纹花叶病毒(BSMV)γb 蛋白通过病毒αa 复制酶被招募到叶绿体中,从而增强病毒的复制。在这里,我们发现 BSMV 感染诱导叶绿体氧化应激。多功能的γb 蛋白直接与 NADPH 依赖性硫氧还蛋白还原酶 C(NTRC)相互作用,NTRC 是叶绿体抗氧化系统的核心组成部分。在本氏烟植物中超表达 NbNTRC 显著抑制 BSMV 的复制,而破坏 NbNTRC 的表达则导致病毒积累增加和感染加重。为了抵御 NTRC 介导的防御,BSMV 利用γb 蛋白来竞争干扰 NbNTRC 与 2-Cys Prx 的结合。总的来说,这项研究表明,γb 不仅作为解旋酶增强子发挥作用,还颠覆了 NTRC 介导的叶绿体抗氧化防御,以创造有利于病毒复制的氧化微环境。

相似文献

1
Barley stripe mosaic virus γb protein disrupts chloroplast antioxidant defenses to optimize viral replication.
EMBO J. 2021 Aug 16;40(16):e107660. doi: 10.15252/embj.2021107660. Epub 2021 Jul 13.
2
Palmitoylation of γb protein directs a dynamic switch between Barley stripe mosaic virus replication and movement.
EMBO J. 2022 Jul 4;41(13):e110060. doi: 10.15252/embj.2021110060. Epub 2022 Jun 1.
3
The Barley stripe mosaic virus γb protein promotes chloroplast-targeted replication by enhancing unwinding of RNA duplexes.
PLoS Pathog. 2017 Apr 7;13(4):e1006319. doi: 10.1371/journal.ppat.1006319. eCollection 2017 Apr.
5
γb Protein Subverts Autophagy to Promote Viral Infection by Disrupting the ATG7-ATG8 Interaction.
Plant Cell. 2018 Jul;30(7):1582-1595. doi: 10.1105/tpc.18.00122. Epub 2018 May 30.
9

引用本文的文献

2
Advances in understanding multifunctionality of Barley stripe mosaic virus γb protein.
PLoS Pathog. 2025 Jul 2;21(7):e1013299. doi: 10.1371/journal.ppat.1013299. eCollection 2025 Jul.
3
The role of reactive oxygen species in plant-virus interactions.
Plant Cell Rep. 2024 Jul 16;43(8):197. doi: 10.1007/s00299-024-03280-1.
4
Zn2+-dependent association of cysteine-rich protein with virion orchestrates morphogenesis of rod-shaped viruses.
PLoS Pathog. 2024 Jun 17;20(6):e1012311. doi: 10.1371/journal.ppat.1012311. eCollection 2024 Jun.
5
Maize catalases are recruited by a virus to modulate viral multiplication and infection.
Mol Plant Pathol. 2024 Mar;25(3):e13440. doi: 10.1111/mpp.13440.
6
Unraveling the Mechanisms of Virus-Induced Symptom Development in Plants.
Plants (Basel). 2023 Jul 31;12(15):2830. doi: 10.3390/plants12152830.
8
Identification of citrus APX gene family and their response to CYVCV infection.
J Plant Res. 2023 May;136(3):371-382. doi: 10.1007/s10265-023-01447-7. Epub 2023 Mar 2.
9
Wheat yellow mosaic virus NIb targets TaVTC2 to elicit broad-spectrum pathogen resistance in wheat.
Plant Biotechnol J. 2023 May;21(5):1073-1088. doi: 10.1111/pbi.14019. Epub 2023 Feb 14.
10
A conserved viral amphipathic helix governs the replication site-specific membrane association.
PLoS Pathog. 2022 Sep 1;18(9):e1010752. doi: 10.1371/journal.ppat.1010752. eCollection 2022 Sep.

本文引用的文献

2
Three-dimensional reconstruction and comparison of vacuolar membranes in response to viral infection.
J Integr Plant Biol. 2021 Feb;63(2):353-364. doi: 10.1111/jipb.13027.
3
Tobacco Necrosis Virus-A Single Coat Protein Amino Acid Substitutions Determine Host-Specific Systemic Infections of and Soybean.
Mol Plant Microbe Interact. 2021 Jan;34(1):49-61. doi: 10.1094/MPMI-07-20-0184-R. Epub 2020 Nov 19.
4
Phytomelatonin: An Emerging Regulator of Plant Biotic Stress Resistance.
Trends Plant Sci. 2021 Jan;26(1):70-82. doi: 10.1016/j.tplants.2020.08.009. Epub 2020 Sep 4.
5
A Defense Pathway Linking Plasma Membrane and Chloroplasts and Co-opted by Pathogens.
Cell. 2020 Sep 3;182(5):1109-1124.e25. doi: 10.1016/j.cell.2020.07.020. Epub 2020 Aug 24.
7
Hijacking of host cellular components as proviral factors by plant-infecting viruses.
Adv Virus Res. 2020;107:37-86. doi: 10.1016/bs.aivir.2020.04.002. Epub 2020 May 25.
8
Autophagy in Plant-Virus Interactions.
Annu Rev Virol. 2020 Sep 29;7(1):403-419. doi: 10.1146/annurev-virology-010220-054709. Epub 2020 Jun 12.
9
R gene mediated defense against viruses.
Curr Opin Virol. 2020 Dec;45:1-7. doi: 10.1016/j.coviro.2020.04.001. Epub 2020 May 11.
10
Rapid systemic signaling during abiotic and biotic stresses: is the ROS wave master of all trades?
Plant J. 2020 Jun;102(5):887-896. doi: 10.1111/tpj.14685. Epub 2020 Feb 18.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验