Suppr超能文献

AniAMPpred:人工智能引导的动物王国中新型抗菌肽的发现。

AniAMPpred: artificial intelligence guided discovery of novel antimicrobial peptides in animal kingdom.

机构信息

Department of Computer Science and Engineering, Indian Institute of Technology (BHU), Varanasi, 221005, Uttar Pradesh, India.

Division of Veterinary Biotechnology, ICAR-Indian Veterinary Research Institute, Izatnagar, 243122, Uttar Pradesh, India.

出版信息

Brief Bioinform. 2021 Nov 5;22(6). doi: 10.1093/bib/bbab242.

Abstract

With advancements in genomics, there has been substantial reduction in the cost and time of genome sequencing and has resulted in lot of data in genome databases. Antimicrobial host defense proteins provide protection against invading microbes. But confirming the antimicrobial function of host proteins by wet-lab experiments is expensive and time consuming. Therefore, there is a need to develop an in silico tool to identify the antimicrobial function of proteins. In the current study, we developed a model AniAMPpred by considering all the available antimicrobial peptides (AMPs) of length $\in $[10 200] from the animal kingdom. The model utilizes a support vector machine algorithm with deep learning-based features and identifies probable antimicrobial proteins (PAPs) in the genome of animals. The results show that our proposed model outperforms other state-of-the-art classifiers, has very high confidence in its predictions, is not biased and can classify both AMPs and non-AMPs for a diverse peptide length with high accuracy. By utilizing AniAMPpred, we identified 436 PAPs in the genome of Helobdella robusta. To further confirm the functional activity of PAPs, we performed BLAST analysis against known AMPs. On detailed analysis of five selected PAPs, we could observe their similarity with antimicrobial proteins of several animal species. Thus, our proposed model can help the researchers identify PAPs in the genome of animals and provide insight into the functional identity of different proteins. An online prediction server is also developed based on the proposed approach, which is freely accessible at https://aniamppred.anvil.app/.

摘要

随着基因组学的发展,基因组测序的成本和时间大幅降低,导致基因组数据库中产生了大量数据。抗菌宿主防御蛋白为抵御入侵微生物提供了保护。但是,通过湿实验室实验确认宿主蛋白的抗菌功能既昂贵又耗时。因此,需要开发一种计算工具来识别蛋白质的抗菌功能。在当前的研究中,我们考虑了来自动物界的所有可用长度为 $\in $[10 200] 的抗菌肽 (AMP),开发了模型 AniAMPpred。该模型利用基于深度学习的特征的支持向量机算法,识别动物基因组中的可能抗菌蛋白 (PAP)。结果表明,我们提出的模型优于其他最先进的分类器,其预测具有非常高的置信度,没有偏差,可以对不同长度的 AMP 和非 AMP 进行分类,具有很高的准确性。通过利用 AniAMPpred,我们在 Helobdella robusta 的基因组中鉴定了 436 个 PAP。为了进一步确认 PAP 的功能活性,我们对已知的 AMP 进行了 BLAST 分析。对五个选定的 PAP 进行详细分析后,我们可以观察到它们与几种动物物种的抗菌蛋白的相似性。因此,我们提出的模型可以帮助研究人员在动物基因组中识别 PAP,并深入了解不同蛋白质的功能同一性。还基于提出的方法开发了一个在线预测服务器,可在 https://aniamppred.anvil.app/ 免费访问。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验