CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Wuhan, 430074, China; Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan, 430074, China.
Department of Pratacultural Sciences, College of Agronomy, Hunan Agricultural University, Changsha, 410128, China.
Environ Res. 2021 Sep;200:111730. doi: 10.1016/j.envres.2021.111730. Epub 2021 Jul 19.
Phytoremediation has been increasingly used as a green technology for the remediation of heavy metal contaminated soils. Microorganisms could enhance phytoremediation efficiency by solubilizing heavy metal and improve plant growth by producing phytohormones in the heavy metal contaminated soils. In this study, we investigated the abundance and composition of soil microbial communities in heavy metal contaminated soils. Furthermore, we identified a Cd-resistant fungal strain Penicillium janthinellum ZZ-2 and assessed its potential in improving plant growth, Cd accumulation and Cd tolerance in bermudagrass. The results indicated that long-term heavy metal pollution decreased microbial biomass and activity by inhibiting microbial community diversity, but did not significantly affect community composition. Mainly, the relative abundance of some specific bacterial and fungal taxa, such as Actinobacteria, Chloroflexi, Bacteroidetes, Ascomycota and Basidiomycota, changes under metal pollution. Furthermore, at genus level, certain microbial taxa, such as Pseudonocardiaceae, AD3, Latescibacteria, Apiotrichum and Paraboeremia, only exist in polluted soil. One Cd-resistant fungus ZZ-2 was isolated and identified as Penicillium janthinellum. Further characterization revealed that ZZ-2 had a greater capacity for Cd absorption, produced indole-3-acid (IAA), and facilitated plant growth in the presence of Cd. Interestingly, ZZ-2 inoculation significantly increased Cd uptake in the stem and root of bermudagrass. Thus, ZZ-2 could improve plant growth under Cd stress by reducing Cd-toxicity, increasing Cd uptake and producing IAA. This study suggests a novel fungus-assisted phytoremediation approach to alleviate Cd toxicity in heavy metals contaminated soils.
植物修复技术作为一种绿色技术,已被越来越多地用于修复重金属污染土壤。微生物可以通过溶解重金属来提高植物修复效率,并通过在重金属污染土壤中产生植物激素来促进植物生长。在本研究中,我们调查了重金属污染土壤中土壤微生物群落的丰度和组成。此外,我们鉴定了一株耐 Cd 真菌Penicillium janthinellum ZZ-2,并评估了其在提高百慕大草生长、Cd 积累和 Cd 耐性方面的潜力。结果表明,长期重金属污染通过抑制微生物群落多样性来降低微生物生物量和活性,但对群落组成没有显著影响。主要是,一些特定细菌和真菌类群(如放线菌、绿弯菌门、拟杆菌门、子囊菌门和担子菌门)的相对丰度在金属污染下发生变化。此外,在属水平上,某些微生物类群,如 Pseudonocardiaceae、AD3、Latescibacteria、Apiotrichum 和 Paraboeremia,仅存在于污染土壤中。从污染土壤中分离出一株耐 Cd 真菌 ZZ-2,并鉴定为 Penicillium janthinellum。进一步的表征表明,ZZ-2 具有更强的 Cd 吸收能力,能产生吲哚-3-乙酸(IAA),并能在 Cd 存在的情况下促进植物生长。有趣的是,ZZ-2 接种显著增加了百慕大草茎和根中的 Cd 吸收量。因此,ZZ-2 可以通过降低 Cd 毒性、增加 Cd 吸收和产生 IAA 来提高 Cd 胁迫下植物的生长。本研究提出了一种利用真菌辅助植物修复的方法,以减轻重金属污染土壤中的 Cd 毒性。