Suppr超能文献

炎症记忆的建立、维持和召回。

Establishment, maintenance, and recall of inflammatory memory.

机构信息

Robin Chemers Neustein Laboratory of Mammalian Cell Biology and Development, Howard Hughes Medical Institute, The Rockefeller University, New York, NY 10065, USA; Neuroscience Institute, New York University School of Medicine, New York, NY 10016, USA.

Robin Chemers Neustein Laboratory of Mammalian Cell Biology and Development, Howard Hughes Medical Institute, The Rockefeller University, New York, NY 10065, USA.

出版信息

Cell Stem Cell. 2021 Oct 7;28(10):1758-1774.e8. doi: 10.1016/j.stem.2021.07.001. Epub 2021 Jul 27.

Abstract

Known for nearly a century but through mechanisms that remain elusive, cells retain a memory of inflammation that equips them to react quickly and broadly to diverse secondary stimuli. Using murine epidermal stem cells as a model, we elucidate how cells establish, maintain, and recall inflammatory memory. Specifically, we landscape and functionally interrogate temporal, dynamic changes to chromatin accessibility, histone modifications, and transcription factor binding that occur during inflammation, post-resolution, and in memory recall following injury. We unearth an essential, unifying role for the general stress-responsive transcription factor FOS, which partners with JUN and cooperates with stimulus-specific STAT3 to establish memory; JUN then remains with other homeostatic factors on memory domains, facilitating rapid FOS re-recruitment and gene re-activation upon diverse secondary challenges. Extending our findings, we offer a comprehensive, potentially universal mechanism behind inflammatory memory and less discriminate recall phenomena with profound implications for tissue fitness in health and disease.

摘要

近一个世纪以来,人们一直试图探究细胞炎症记忆的形成机制,但至今仍未完全阐明。细胞炎症记忆使细胞能够快速广泛地对各种二次刺激做出反应。本研究以鼠表皮干细胞为模型,阐明了细胞如何建立、维持和回忆炎症记忆。具体而言,我们对染色质可及性、组蛋白修饰和转录因子结合的时空动态变化进行了全景分析和功能研究,这些变化发生在炎症、消退后和损伤后的记忆召回过程中。我们发现了一般应激反应转录因子 FOS 的重要统一作用,它与 JUN 形成伙伴关系,并与刺激特异性 STAT3 合作建立记忆;JUN 随后与记忆域中的其他稳态因子一起存在,在受到各种二次挑战时,促进 FOS 的快速重新募集和基因重新激活。扩展我们的研究发现,我们提供了炎症记忆背后的一个全面的、潜在的普遍机制,以及炎症记忆召回现象的更少区分,这对健康和疾病状态下组织适应性具有深远的意义。

相似文献

1
Establishment, maintenance, and recall of inflammatory memory.
Cell Stem Cell. 2021 Oct 7;28(10):1758-1774.e8. doi: 10.1016/j.stem.2021.07.001. Epub 2021 Jul 27.
2
3D chromatin reprogramming primes human memory T2 cells for rapid recall and pathogenic dysfunction.
Sci Immunol. 2023 Jul 14;8(85):eadg3917. doi: 10.1126/sciimmunol.adg3917. Epub 2023 Jul 7.
3
The Role of Epigenetic Regulation in Transcriptional Memory in the Immune System.
Adv Protein Chem Struct Biol. 2017;106:43-69. doi: 10.1016/bs.apcsb.2016.09.002. Epub 2016 Oct 8.
4
Stress-responsive transcription factors train stem cells to remember.
Cell Stem Cell. 2021 Oct 7;28(10):1679-1680. doi: 10.1016/j.stem.2021.09.005.
5
A Transcription Factor Pulse Can Prime Chromatin for Heritable Transcriptional Memory.
Mol Cell Biol. 2017 Feb 1;37(4). doi: 10.1128/MCB.00372-16. Print 2017 Feb 15.
6
9
The transcription factor reservoir and chromatin landscape in activated plasmacytoid dendritic cells.
BMC Genom Data. 2021 Sep 20;22(1):37. doi: 10.1186/s12863-021-00991-2.

引用本文的文献

1
DFFB suppresses interferon to enable cancer persister cell regrowth.
bioRxiv. 2025 Aug 21:2025.08.15.670603. doi: 10.1101/2025.08.15.670603.
2
Psoriasis, stem cells, and obesity: metabolic exploration for therapeutics.
J Med Life. 2025 Jul;18(7):608-620. doi: 10.25122/jml-2025-0033.
3
The epigenetic circle: feedback loops in the maintenance of cellular memory.
Epigenetics Chromatin. 2025 Aug 20;18(1):56. doi: 10.1186/s13072-025-00621-6.
5
Astrocyte priming enhances microglial Aβ clearance and is compromised by APOE4.
Nat Commun. 2025 Aug 14;16(1):7551. doi: 10.1038/s41467-025-62995-1.
6
Metabolic imprinting drives epithelial memory during mucosal fungal infection.
bioRxiv. 2025 Jul 17:2025.07.11.664387. doi: 10.1101/2025.07.11.664387.
8
How stem cells respond to infection, inflammation and ageing.
Nat Rev Immunol. 2025 Jul 24. doi: 10.1038/s41577-025-01203-z.

本文引用的文献

1
Trained Immunity: Reprogramming Innate Immunity in Health and Disease.
Annu Rev Immunol. 2021 Apr 26;39:667-693. doi: 10.1146/annurev-immunol-102119-073855. Epub 2021 Feb 26.
2
Trained immunity, tolerance, priming and differentiation: distinct immunological processes.
Nat Immunol. 2021 Jan;22(1):2-6. doi: 10.1038/s41590-020-00845-6.
3
Causes and consequences of RNA polymerase II stalling during transcript elongation.
Nat Rev Mol Cell Biol. 2021 Jan;22(1):3-21. doi: 10.1038/s41580-020-00308-8. Epub 2020 Nov 18.
6
The pregnant myometrium is epigenetically activated at contractility-driving gene loci prior to the onset of labor in mice.
PLoS Biol. 2020 Jul 15;18(7):e3000710. doi: 10.1371/journal.pbio.3000710. eCollection 2020 Jul.
7
BCG Vaccination in Humans Elicits Trained Immunity via the Hematopoietic Progenitor Compartment.
Cell Host Microbe. 2020 Aug 12;28(2):322-334.e5. doi: 10.1016/j.chom.2020.05.014. Epub 2020 Jun 15.
8
NFI transcription factors provide chromatin access to maintain stem cell identity while preventing unintended lineage fate choices.
Nat Cell Biol. 2020 Jun;22(6):640-650. doi: 10.1038/s41556-020-0513-0. Epub 2020 May 11.
9
C/EBPβ-Dependent Epigenetic Memory Induces Trained Immunity in Hematopoietic Stem Cells.
Cell Stem Cell. 2020 May 7;26(5):657-674.e8. doi: 10.1016/j.stem.2020.01.017. Epub 2020 Mar 12.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验