Li Luyao, He Xiaoyi, Keoleian Gregory A, Kim Hyung Chul, De Kleine Robert, Wallington Timothy J, Kemp Nicholas J
Center for Sustainable Systems, School for Environment and Sustainability, University of Michigan, 440 Church Street, Ann Arbor, Michigan 48109, United States.
Research and Innovation Center, Ford Motor Company, Dearborn, Michigan 48121, United States.
Environ Sci Technol. 2021 Aug 17;55(16):11360-11367. doi: 10.1021/acs.est.0c08213. Epub 2021 Jul 30.
Increased E-commerce and demand for contactless delivery during the COVID-19 pandemic have fueled interest in robotic package delivery. We evaluate life cycle greenhouse gas (GHG) emissions for automated suburban ground delivery systems consisting of a vehicle (last-mile) and a robot (final-50-feet). Small and large cargo vans (125 and 350 cubic feet; V125 and V350) with an internal combustion engine (ICEV) and battery electric (BEV) powertrains were assessed for three delivery scenarios: (i) , human-driven vehicle with human delivery; (ii) , human-driven vehicle with robot delivery; and (iii) , connected automated vehicle (CAV) with robot delivery. The robot's contribution to life cycle GHG emissions is small (2-6%). Compared to the conventional scenario, full automation results in similar GHG emissions for the V350-ICEV but 10% higher for the V125-BEV. Conventional delivery with a V125-BEV provides the lowest GHG emissions, 167 g COe/package, while partially automated delivery with a V350-ICEV generates the most at 486 g COe/package. Fuel economy and delivery density are key parameters, and electrification of the vehicle and carbon intensity of the electricity have a large impact. CAV power requirements and efficiency benefits largely offset each other, and automation has a moderate impact on life cycle GHG emissions.
在新冠疫情期间,电子商务的增长以及对非接触式配送的需求推动了人们对机器人包裹配送的兴趣。我们评估了由一辆车辆(最后一英里)和一个机器人(最后50英尺)组成的自动化郊区地面配送系统的生命周期温室气体(GHG)排放。对配备内燃机(ICEV)和电池电动(BEV)动力系统的小型和大型货运面包车(125立方英尺和350立方英尺;V125和V350)进行了三种配送场景的评估:(i) ,人工驾驶车辆且人工配送;(ii) ,人工驾驶车辆且机器人配送;以及(iii) ,联网自动驾驶车辆(CAV)且机器人配送。机器人对生命周期温室气体排放的贡献很小(2%-6%)。与传统场景相比,全自动化导致V350-ICEV的温室气体排放相似,但V125-BEV的温室气体排放高10%。使用V125-BEV的传统配送产生的温室气体排放最低,为167克二氧化碳当量/包裹,而使用V350-ICEV的部分自动化配送产生的温室气体排放最高,为486克二氧化碳当量/包裹。燃油经济性和配送密度是关键参数,车辆的电气化和电力的碳强度有很大影响。CAV的动力需求和效率优势在很大程度上相互抵消,自动化对生命周期温室气体排放有适度影响。